This should be easy! Right?

Geometry Level 5

A B C \bigtriangleup ABC is a triangle such that A C = 13 AC = 13 units, A B = 20 AB = 20 units and B C = 12 BC = 12 units. D D is a point on BC such that B D = D C BD = DC . A square A D E F ADEF is drawn with a side A D AD .

If the area of the triangle C D E CDE is equal to G H unit 2 \dfrac GH \text{ unit}^2 , where G G and H H are coprime positive integers, find G + H G+H .

Try Part-2 and Part-3 also.


The answer is 239.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aareyan Manzoor
Jan 14, 2016

Refer to the image above.

We deduce that B D = D C = 6 BD=DC=6 .

by the cosine law 2 0 2 = 1 2 2 + 1 3 2 2 12 13 cos ( C ) cos ( C ) = 29 104 20^2=12^2+13^2-2*12*13\cos(C)\Longrightarrow\cos(C)=\dfrac{-29}{104} Let the lenght of the sqare be a a Consider it to be a lenght of the triangle 6 , 13 , a 6,13,a .It has the same angle as the big triangle! By the cosine law: a 2 = 6 2 + 1 3 2 2 6 13 cos ( C ) = 497 2 a = 497 2 a^2=6^2+13^2-2*6*13\cos(C)=\dfrac{497}{2}\Longrightarrow a=\sqrt{\dfrac{497}{2}} Consider the angle opposite to the side 13 in the small triangle. let it be A A .Using the cosine law again: 1 3 2 = 6 2 + 497 2 2 6 497 2 cos ( A ) A = arccos ( 11 7 142 4 ) 13^2=6^2+\dfrac{497}{2}-2*6\sqrt{\dfrac{497}{2}}\cos(A)\Longrightarrow A = \arccos\left(\dfrac{11 \sqrt{\dfrac{7}{142}}}{4}\right) Since a square makes π 2 \dfrac{\pi}{2} angle between each sides, the angle adjacent to A A is π 2 A \dfrac{\pi}{2}-A . We know the value of the two sides required for the formula of the area(the sides of a square are equal) area = 1 2 6 497 2 sin ( π 2 arccos ( 11 7 142 4 ) ) = 1 2 6 497 2 cos ( arccos ( 11 7 142 4 ) ) = 1 2 6 497 2 11 7 142 4 = 231 8 231 + 8 = 239 \text{area}=\dfrac{1}{2}*6*\sqrt{\dfrac{497}{2}}*\sin\left(\dfrac{\pi}{2}- \arccos\left(\dfrac{11 \sqrt{\dfrac{7}{142}}}{4}\right)\right)\\=\dfrac{1}{2}*6*\sqrt{\dfrac{497}{2}}*\cos\left(\arccos\left(\dfrac{11 \sqrt{\dfrac{7}{142}}}{4}\right)\right)=\dfrac{1}{2}*6*\sqrt{\dfrac{497}{2}}*\dfrac{11 \sqrt{\dfrac{7}{142}}}{4}=\dfrac{231}{8}\\ 231+8=\boxed{239}

@Akshay Yadav , do you want me to put the image in the problem? Popular problem often have pictures!

Aareyan Manzoor - 5 years, 5 months ago

Log in to reply

Ok. You can do that.😁

Akshay Yadav - 5 years, 5 months ago

Log in to reply

Done! How does it look now?

Aareyan Manzoor - 5 years, 5 months ago

Log in to reply

@Aareyan Manzoor It looks great!

Akshay Yadav - 5 years, 5 months ago

First we find the median A D AD using the formula A D = 2 ( A C 2 + A B 2 ) B C 2 2 AD=\dfrac{\sqrt{2(AC^2+AB^2)-BC^2}}{2} .

Then A D = 2 ( 1 3 2 + 2 0 2 ) 1 2 2 2 = 994 2 AD=\dfrac{\sqrt{2(13^2+20^2)-12^2}}{2}=\dfrac{\sqrt{994}}{2} . Now let θ = A D C \theta=\angle ADC , then C D E = 9 0 θ \angle CDE=90^\circ-\theta , also A D = D E AD=DE .

Using Law of cosines we get cos θ = C D 2 + A D 2 A C 2 2 C D A D = 6 2 + ( 994 2 ) 2 1 3 2 2 ( 6 ) ( 994 2 ) = 77 4 994 \cos\theta=\dfrac{CD^2+AD^2-AC^2}{2\cdot CD \cdot AD}=\dfrac{6^2+\left(\dfrac{\sqrt{994}}{2}\right)^2-13^2}{2(6)\left(\dfrac{\sqrt{994}}{2}\right)}=\dfrac{77}{4\sqrt{994}} .

Finally, [ C D E ] = 1 2 C D D E sin ( 9 0 θ ) = 1 2 ( 6 ) ( 994 2 ) ( 77 4 994 ) = 231 8 [CDE]=\dfrac{1}{2}CD\cdot DE\cdot\sin(90^\circ-\theta)=\dfrac{1}{2}(6)\left(\dfrac{\cancel{\sqrt{994}}}{2}\right)\left(\dfrac{77}{4\cancel{\sqrt{994}}}\right)=\dfrac{231}{8} .

So the answer is 231 + 8 = 239 231+8=\boxed{239} .

I did it the same way.

Anupam Nayak - 5 years, 4 months ago

A D 2 = 1 4 ( 2 A B + 2 A C 2 B C 2 ) = 497 2 . B D = D C = 6. C o s A D C = A D 2 + 6 2 1 3 2 2 A D 6 A r e a o f Δ C D E = 1 2 A D h . B u t h = D C C o s A D C . A r e a Δ C D E = 1 2 A D D C A D 2 + 6 2 1 3 2 2 A D 6 . A r e a Δ C D E = 1 2 6 497 2 + 6 2 1 3 2 2 6 = 231 8 . A r e a Δ C D E = G H . G + H = 239 \color{#3D99F6}{AD^2}=\frac 1 4*(2 *AB+2*AC^2-BC^2 )= \color{#3D99F6}{\dfrac{497} 2}.\\ BD=DC=6. ~~~~~~CosADC= \dfrac{AD^2+6^2-13^2}{2*AD*6} \\ Area ~ of ~ \Delta ~CDE=\dfrac 1 2 *AD*h. ~~~But ~ h=DC*CosADC.\\ Area ~\Delta ~ CDE= \dfrac 1 2 *\cancel{AD }*DC*\dfrac{AD^2+6^2-13^2}{2*\cancel{AD*}6} .\\ Area ~\Delta ~ CDE= \dfrac 1 2 *6*\dfrac {\frac{497} 2 +6^2-13^2}{2*6} =\dfrac{231} 8. Area ~\Delta~CDE=\dfrac G H. ~~\therefore ~G + H=\Huge ~~~\color{#D61F06}{239}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...