Thou shalt generalize it first!

Calculus Level 5

0 e x 2 cos 3 ( x ) d x = π 1 A B [ η e C D + e E F ] \large \displaystyle \int_{0}^{\infty}e^{-x^{2}}\cos^{3}{(x)}\mathbb{d}x =\dfrac{\pi^{\frac{1}{A}}}{B} \left[\eta e^{-\frac{C}{D}}+e^{-\frac{E}{F}}\right]

If the above integral is true for positive integers A , B , C , D , E , F , η A,B,C,D,E,F,\eta , where gcd ( C , D ) = gcd ( E , F ) = 1 \gcd(C,D) = \gcd(E,F) = 1 , find the value of A + B + C + D + E + F η A+B+C+D+E+F-\eta .


This problem is original. Go here for more problems.


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kunal Gupta
Sep 28, 2015

The answer is: π 8 [ 3 e 1 4 + e 9 4 ] \huge \dfrac{\sqrt{\pi}}{8}\left[3 e^{-\frac{1}{4}}+e^{-\frac{9}{4}}\right] Ok, the solution is as follows!
Consider, I ( a ) = 0 e x 2 cos ( a x ) d x I(a) = \displaystyle \int_{0}^{\infty}e^{-x^{2}}\cos{(ax)}\mathbb{d}x Differentiating w.r.t a a , we get:
I ( a ) = 0 x e x 2 sin ( a x ) d x I'(a) = \displaystyle -\int_{0}^{\infty}xe^{-x^{2}}\sin{(ax)}\mathbb{d}x Integrating by parts, we get
I ( a ) = a 2 I ( a ) I'(a) =-\dfrac{a}{2}I(a) Solving the ODE,we get: ln ( I ( a ) ) = a 2 4 + c \ln(I(a)) =-\dfrac{a^2}{4}+c Using the fact of the Gaussian Integral; I ( 0 ) = π 2 I(0) =\dfrac{\sqrt{\pi}}{2} We get: I ( a ) = π 2 e a 2 4 I(a) =\dfrac{\sqrt{\pi}}{2}e^{-\frac{a^2}{4}} Also, cos 3 ( x ) = 3 4 cos ( x ) + 1 4 cos ( 3 x ) \cos^{3}(x) = \dfrac{3}{4}\cos(x) +\dfrac{1}{4}\cos(3x)
The integral can be easily conjured up, to get the answer: π 8 [ 3 e 1 4 + e 9 4 ] \huge \dfrac{\sqrt{\pi}}{8}\left[3 e^{-\frac{1}{4}}+e^{-\frac{9}{4}}\right] Q . E . D \large \mathbb{Q.E.D}


Can you show the relevant workings please? Thanks

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh there you go!

Kunal Gupta - 5 years, 8 months ago

Log in to reply

Oh right. Triple angle formula. I thought about complex residue which really complicates things. Thanks! Let me print this solution.

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh @Pi Han Goh Print?!

Kunal Gupta - 5 years, 8 months ago

Log in to reply

@Kunal Gupta Stuff I like on internet = Stuff I print/copy down.

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh Oh thanks!

Kunal Gupta - 5 years, 8 months ago

Log in to reply

@Kunal Gupta Wait. Minor error: cos ( 3 x ) = 4 cos 3 ( x ) 3 cos ( x ) cos 3 ( x ) = 1 4 cos ( 3 x ) + 3 4 cos ( x ) \cos(3x) = 4\cos^3(x) - 3\cos(x) \Rightarrow \cos^3(x) = \frac14 \cos(3x) + \frac34 \cos(x) .

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh @Pi Han Goh Oh!! Thanks I'll edit accordingly!

Kunal Gupta - 5 years, 8 months ago

Log in to reply

@Kunal Gupta Ahhaha. Thanks. Now, I can print!

Pi Han Goh - 5 years, 8 months ago

@Kunal Gupta Can you post a solution for this ?

ahah

Pi Han Goh - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...