Three is Four

Geometry Level pending

The figure shows three congruent circles in the unit square, A B C D ABCD . Find a closed-form for the length of their radius, r r , convert it to decimal, and submit 1 0 6 r \lfloor{10^6r}\rfloor .


The answer is 228155.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sathvik Acharya
Feb 24, 2021

Construction: Extend line segments C F CF , B A BA and let G G be the point of intersection. Since D C F A G F \triangle DCF\sim \triangle AGF , F D A F = C D G A x 1 x = 1 G A G A = 1 x x \begin{aligned} \frac{FD}{AF}=\frac{CD}{GA} \implies \frac{x}{1-x}=\frac{1}{GA} \implies GA=\frac{1-x}{x} \end{aligned} Using the Pythagorean Theorem in D C F \triangle DCF and A G F \triangle AGF , C F 2 = F D 2 + D C 2 C F = 1 + x 2 F G 2 = G A 2 + A F 2 F G = ( 1 x ) 2 x 2 + ( 1 x ) 2 = ( 1 x ) 1 + x 2 x \begin{aligned} CF^2&=FD^2+DC^2 \\ CF&=\sqrt{1+x^2} \\ \\ FG^2&=GA^2+AF^2 \\ FG&=\sqrt{\frac{(1-x)^2}{x^2}+(1-x)^2} \\ &=\frac{(1-x)\sqrt{1+x^2}}{x} \end{aligned} The circle centered at O 1 O_1 is the incircle of right D C F \triangle DCF . Therefore, r = C D D F C D + D F + F C = x 1 + x + 1 + x 2 \begin{aligned} r&=\frac{CD\cdot DF}{CD+DF+FC} \\ &=\frac{x}{1+x+\sqrt{1+x^2}} \end{aligned} The circle centered at O 2 O_2 is the excircle of right A G F \triangle AGF . Therefore, r = G A A F G A + F G A F = 1 x x ( 1 x ) 1 x x + ( 1 x ) 1 + x 2 x ( 1 x ) = 1 x 1 + 1 + x 2 x \begin{aligned} r&=\frac{GA\cdot AF}{GA+FG-AF} \\ &=\frac{\dfrac{1-x}{x}\cdot (1-x)}{\dfrac{1-x}{x}+\dfrac{(1-x)\sqrt{1+x^2}}{x}-(1-x)} \\ &=\frac{1-x}{1+\sqrt{1+x^2}-x} \end{aligned} So, we have the following relations, { r = x 1 + x + 1 + x 2 r = 1 x 1 + 1 + x 2 x \begin{cases} r=\dfrac{x}{1+x+\sqrt{1+x^2}} \\ \\ r=\dfrac{1-x}{1+\sqrt{1+x^2}-x} \end{cases} Solving the above system of equations, we have, x 0.6477988... , r 0.2281554... 1 0 6 r = 228155 x\approx 0.6477988...\; ,\; r\approx 0.2281554...\implies \lfloor 10^6 r\rfloor=\boxed{228155}

Very clear explanation (and diagram). Nice observation about the excircle. Thank you.

Fletcher Mattox - 3 months, 2 weeks ago

Log in to reply

Your kind comments/remarks are always appreciated :)

Sathvik Acharya - 3 months, 2 weeks ago

Log in to reply

@Fletcher Mattox I think you meant to write three "congruent" circles (not three "concentric" circles) in the problem.

David Vreken - 3 months, 2 weeks ago

Log in to reply

@David Vreken Quite right. Thank you.

Fletcher Mattox - 3 months, 2 weeks ago
Chew-Seong Cheong
Feb 28, 2021

The half-angle tangent substitution provide a straight-forward way of solving incircle problems as shown in this solution.

Let C E B = θ \angle CEB = \theta . Consider the bottom-right circle and segment E B EB .

E H + H B = E B r cot C E B 2 + r C B cot C E B r cot θ 2 + r = cot θ Let t = tan θ 2 r t + r = 1 t 2 2 t 1 + t t r = 1 t 2 2 t r = 1 t 2 t = 1 2 r \begin{aligned} EH + HB & = EB \\ r \cot \frac {\angle CEB}2 + r & CB \cot \angle CEB \\ r \cot \frac \theta 2 +r & = \cot \theta & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \frac rt + r & = \frac {1-t^2}{2t} \\ \frac {1+t}t \cdot r & = \frac {1-t^2}{2t} \\ r & = \frac {1-t}2 \\ \implies t & = 1 - 2r \end{aligned}

Now consider A B AB :

r + r cot ( 9 0 θ 2 ) + r cot θ 2 + r = A B = 1 2 r + r t + r t = 1 2 r t + r t 2 + r t Note that t = 1 2 r 2 r ( 1 2 r ) + r ( 1 2 r ) 2 + r = 1 2 r 4 r 3 8 r 2 + 6 r 1 = 0 Using Cardano’s method \begin{aligned} r + r \cot \left(90^\circ - \frac \theta 2 \right) + r \cot \frac \theta 2 + r & = AB = 1 \\ 2r + r t + \frac rt & = 1 \\ 2rt + rt^2 + r & - t & \small \blue{\text{Note that }t = 1-2r} \\ 2r(1-2r) + r(1-2r)^2 + r & = 1-2r \\ 4r^3 - 8r^2 + 6r - 1 & = 0 & \small \blue{\text{Using Cardano's method}} \end{aligned}

r = 2 3 1 3 3 33 17 3 + 3 33 17 3 6 0.228155493653962 1 0 6 r = 228155 \begin{aligned} \implies r & = \frac 23 - \frac 1{3\sqrt[3]{3\sqrt{33}-17}} + \frac {\sqrt[3]{3\sqrt{33}-17}}6 \\ & \approx 0.228155493653962 \\ \implies \lfloor 10^6r \rfloor & = \boxed{228155} \end{aligned}


Reference: Cardano's method

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...