The real numbers a , b , c , x , y , z satisfy a ≥ b ≥ c > 0 and x ≥ y ≥ z > 0
The minimum value of
( b y + c z ) ( b z + c y ) ( a x ) 2 + ( c z + a x ) ( c x + a z ) ( b y ) 2 + ( a x + b y ) ( a y + b x ) ( c z ) 2
can be expressed as n m , where m and n are positive coprime integers. Find 5 0 ( m + n )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yeah! Kartik sharma
Log in to reply
Well, nice problem!
I just substituted a=b=c and x=y=z and got the value as 4 3
Can you please explain why ? Thanks !
Log in to reply
because most inequalities work that way!
Log in to reply
Yes! You are right! Lol!
Log in to reply
@Pranjal Jain – Please think its a good question @Agnishom Chattopadhyay @Pranjal Jain
Correct me if I am wrong, but I think this only works because x is greater or equal than y and so on. If x would have been just greater I don't think that have worked.
Log in to reply
If you live in Romania, you definitely live on Earth!! I mean that if something is true for even an "equality" case, it must be true for "greater" case.
Cauchy-Schwarz ⟹ ( b y + c z ) ≤ ( b 2 + c 2 ) ( y 2 + z 2 )
and ( b y + c z ) ≤ ( b 2 + c 2 ) ( y 2 + z 2 ) , do the same with the other denominators.
Using Chebyshev inequality we maximize again the denominator;
2 ( b 2 + c 2 ) ( y 2 + z 2 ) ≤ ( b 2 y 2 + c 2 z 2 ) = ( b y ) 2 + ( c y ) 2
Now we obtained:
2 ( ( b y ) 2 + ( c y ) 2 ) ) ( a x ) 2 + 2 ( ( a x ) 2 + ( c z ) 2 ) ) ( b y ) 2 + 2 ( ( a x ) 2 + ( b y ) 2 ) ) ( c z ) 2
applying Nesbitt's Inequality (can be found here ) the sum above is greater or equal to 4 3
Problem Loading...
Note Loading...
Set Loading...
( b y + c z ) ( b z + c y ) ( a x ) 2 + ( a x + c z ) ( c x + a z ) ( b y ) 2 + ( a x + b y ) ( a y + b x ) ( c z ) 2
First thing that came in my mind was Cauchy Schwarz,
( ( b y + c z ) ( b z + c y ) ( a x ) 2 + ( a x + c z ) ( c x + a z ) ( b y ) 2 + ( a x + b y ) ( a y + b x ) ( c z ) 2 ) ( ( a x ) 2 ( b y + c z ) ( b z + c y ) + ( b y ) 2 ( a x + c z ) ( c x + a z ) + ( c z ) 2 ( a x + b y ) ( a y + b x ) ) ≥ 9
As x ≥ y ≥ z > 0 and a ≥ b ≥ c > 0 ,
( b y + c z ) ≥ ( b z + c y ) and so on.
Hence, the above equation becomes
( ( b y + c z ) ( b z + c y ) ( a x ) 2 + ( a x + c z ) ( c x + a z ) ( b y ) 2 + ( a x + b y ) ( a y + b x ) ( c z ) 2 ) ( ( a x ) 2 ( b z + c y ) 2 + ( b y ) 2 ( c x + a z ) 2 + ( c z ) 2 ( a y + b x ) 2 ) ≥ 9
Now, using AM-GM on the 2nd productend,
( b z + c y ) 2 ≥ 4 b y c z and so on.
Hence, the above equation simplifies to
( ( b y + c z ) ( b z + c y ) ( a x ) 2 + ( a x + c z ) ( c x + a z ) ( b y ) 2 + ( a x + b y ) ( a y + b x ) ( c z ) 2 ) ( ( a x ) 2 4 b y c z + ( b y ) 2 4 c x a z + ( c z ) 2 4 a x b y ) ≥ 9
Now again using AM-GM,
( a x ) 2 b y c z + ( b y ) 2 c x a z + ( c z ) 2 a x b y ≥ 3 3 a 2 b 2 c 2 x 2 y 2 z 2 a 2 b 2 c 2 x 2 y 2 z 2
≥ 3
As a result equation simplifies
( ( b y + c z ) ( b z + c y ) ( a x ) 2 + ( a x + c z ) ( c x + a z ) ( b y ) 2 + ( a x + b y ) ( a y + b x ) ( c z ) 2 ) ( 1 2 ) ≥ 9
( ( b y + c z ) ( b z + c y ) ( a x ) 2 + ( a x + c z ) ( c x + a z ) ( b y ) 2 + ( a x + b y ) ( a y + b x ) ( c z ) 2 ) ≥ 4 3