Titu's, CS, or Something Else?

Algebra Level 4

The real numbers a , b , c , x , y , z a , b , c , x , y , z satisfy a b c > 0 a\geq b \geq c > 0 and x y z > 0 x \geq y \geq z >0

The minimum value of

( a x ) 2 ( b y + c z ) ( b z + c y ) + ( b y ) 2 ( c z + a x ) ( c x + a z ) + ( c z ) 2 ( a x + b y ) ( a y + b x ) {\dfrac{(ax)^{2}}{(by + cz)(bz + cy)}} + {\dfrac{(by)^{2}}{(cz + ax)(cx + az)}} + {\dfrac{(cz)^{2}}{(ax + by)(ay + bx)}}

can be expressed as m n \frac{m}{n} , where m m and n n are positive coprime integers. Find 50 ( m + n ) 50(m + n)


The answer is 350.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kartik Sharma
Dec 12, 2014

( a x ) 2 ( b y + c z ) ( b z + c y ) + ( b y ) 2 ( a x + c z ) ( c x + a z ) + ( c z ) 2 ( a x + b y ) ( a y + b x ) \frac{{(ax)}^{2}}{(by+cz)(bz+cy)} + \frac{{(by)}^{2}}{(ax+cz)(cx+az)} + \frac{{(cz)}^{2}}{(ax+by)(ay+bx)}

First thing that came in my mind was Cauchy Schwarz,

( ( a x ) 2 ( b y + c z ) ( b z + c y ) + ( b y ) 2 ( a x + c z ) ( c x + a z ) + ( c z ) 2 ( a x + b y ) ( a y + b x ) ) ( ( b y + c z ) ( b z + c y ) ( a x ) 2 + ( a x + c z ) ( c x + a z ) ( b y ) 2 + ( a x + b y ) ( a y + b x ) ( c z ) 2 ) 9 (\frac{{(ax)}^{2}}{(by+cz)(bz+cy)} + \frac{{(by)}^{2}}{(ax+cz)(cx+az)} + \frac{{(cz)}^{2}}{(ax+by)(ay+bx)})(\frac{(by+cz)(bz+cy)}{{(ax)}^{2}} + \frac{(ax+cz)(cx+az)}{{(by)}^{2}} + \frac{(ax+by)(ay+bx)}{{(cz)}^{2}}) \geq 9

As x y z > 0 x \geq y \geq z >0 and a b c > 0 a \geq b \geq c > 0 ,

( b y + c z ) ( b z + c y ) (by+cz) \geq (bz + cy) and so on.

Hence, the above equation becomes

( ( a x ) 2 ( b y + c z ) ( b z + c y ) + ( b y ) 2 ( a x + c z ) ( c x + a z ) + ( c z ) 2 ( a x + b y ) ( a y + b x ) ) ( ( b z + c y ) 2 ( a x ) 2 + ( c x + a z ) 2 ( b y ) 2 + ( a y + b x ) 2 ( c z ) 2 ) 9 (\frac{{(ax)}^{2}}{(by+cz)(bz+cy)} + \frac{{(by)}^{2}}{(ax+cz)(cx+az)} + \frac{{(cz)}^{2}}{(ax+by)(ay+bx)})(\frac{{(bz+cy)}^{2}}{{(ax)}^{2}} + \frac{{(cx + az)}^{2}}{{(by)}^{2}} + \frac{{(ay+bx)}^{2}}{{(cz)}^{2}}) \geq 9

Now, using AM-GM on the 2nd productend,

( b z + c y ) 2 4 b y c z {(bz+cy)}^{2} \geq 4bycz and so on.

Hence, the above equation simplifies to

( ( a x ) 2 ( b y + c z ) ( b z + c y ) + ( b y ) 2 ( a x + c z ) ( c x + a z ) + ( c z ) 2 ( a x + b y ) ( a y + b x ) ) ( 4 b y c z ( a x ) 2 + 4 c x a z ( b y ) 2 + 4 a x b y ( c z ) 2 ) 9 (\frac{{(ax)}^{2}}{(by+cz)(bz+cy)} + \frac{{(by)}^{2}}{(ax+cz)(cx+az)} + \frac{{(cz)}^{2}}{(ax+by)(ay+bx)})(\frac{4bycz}{{(ax)}^{2}} + \frac{4cxaz}{{(by)}^{2}} + \frac{4axby}{{(cz)}^{2}}) \geq 9

Now again using AM-GM,

b y c z ( a x ) 2 + c x a z ( b y ) 2 + a x b y ( c z ) 2 3 a 2 b 2 c 2 x 2 y 2 z 2 a 2 b 2 c 2 x 2 y 2 z 2 3 \frac{bycz}{{(ax)}^{2}} + \frac{cxaz}{{(by)}^{2}} + \frac{axby}{{(cz)}^{2}} \geq 3\sqrt [ 3 ]{ \frac { { a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 }{ x }^{ 2 }{ y }^{ 2 }{ z }^{ 2 } }{ { a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 }{ x }^{ 2 }{ y }^{ 2 }{ z }^{ 2 } } }

3 \geq 3

As a result equation simplifies

( ( a x ) 2 ( b y + c z ) ( b z + c y ) + ( b y ) 2 ( a x + c z ) ( c x + a z ) + ( c z ) 2 ( a x + b y ) ( a y + b x ) ) ( 12 ) 9 (\frac{{(ax)}^{2}}{(by+cz)(bz+cy)} + \frac{{(by)}^{2}}{(ax+cz)(cx+az)} + \frac{{(cz)}^{2}}{(ax+by)(ay+bx)})(12) \geq 9

( ( a x ) 2 ( b y + c z ) ( b z + c y ) + ( b y ) 2 ( a x + c z ) ( c x + a z ) + ( c z ) 2 ( a x + b y ) ( a y + b x ) ) 3 4 (\frac{{(ax)}^{2}}{(by+cz)(bz+cy)} + \frac{{(by)}^{2}}{(ax+cz)(cx+az)} + \frac{{(cz)}^{2}}{(ax+by)(ay+bx)}) \geq \frac{3}{4}

Yeah! Kartik sharma

U Z - 6 years, 6 months ago

Log in to reply

Well, nice problem!

Kartik Sharma - 6 years, 6 months ago

Log in to reply

Excellent solution, Kartik Sharma.

Saurabh Mallik - 5 years, 3 months ago
Pranjal Jain
Dec 11, 2014

I just substituted a=b=c and x=y=z and got the value as 3 4 \frac{3}{4}

Can you please explain why ? Thanks !

Deepanshu Gupta - 6 years, 6 months ago

Log in to reply

because most inequalities work that way!

Agnishom Chattopadhyay - 6 years, 6 months ago

Log in to reply

Yes! You are right! Lol!

Pranjal Jain - 6 years, 6 months ago

Log in to reply

@Pranjal Jain Please think its a good question @Agnishom Chattopadhyay @Pranjal Jain

U Z - 6 years, 6 months ago

Correct me if I am wrong, but I think this only works because x is greater or equal than y and so on. If x would have been just greater I don't think that have worked.

Radinoiu Damian - 6 years, 5 months ago

Log in to reply

If you live in Romania, you definitely live on Earth!! I mean that if something is true for even an "equality" case, it must be true for "greater" case.

Pranjal Jain - 6 years, 5 months ago
Barack Clinton
Feb 1, 2015

Cauchy-Schwarz ( b y + c z ) ( b 2 + c 2 ) ( y 2 + z 2 ) \implies (by+cz)\le\sqrt{(b^2+c^2)(y^2+z^2)}

and ( b y + c z ) ( b 2 + c 2 ) ( y 2 + z 2 ) (by+cz)\le\sqrt{(b^2+c^2)(y^2+z^2)} , do the same with the other denominators.

Using Chebyshev inequality we maximize again the denominator;

( b 2 + c 2 ) ( y 2 + z 2 ) 2 ( b 2 y 2 + c 2 z 2 ) = ( b y ) 2 + ( c y ) 2 \frac{(b^2+c^2)(y^2+z^2)}{2}\le(b^2y^2+c^2z^2)=(by)^2+(cy)^2

Now we obtained:

( a x ) 2 2 ( ( b y ) 2 + ( c y ) 2 ) ) + ( b y ) 2 2 ( ( a x ) 2 + ( c z ) 2 ) ) + ( c z ) 2 2 ( ( a x ) 2 + ( b y ) 2 ) ) \frac{(ax)^2}{2\left((by)^2+(cy)^2)\right)}+\frac{(by)^2}{2\left((ax)^2+(cz)^2)\right)}+\frac{(cz)^2}{2\left((ax)^2+(by)^2)\right)}

applying Nesbitt's Inequality (can be found here ) the sum above is greater or equal to 3 4 \frac{3}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...