What is the last four digits of
6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
why is the final consideration 63^{467}
Log in to reply
Because 6 3 6 7 m o d 5 0 0 = 4 6 7 . Why 6 3 6 7 is because 6 3 7 m o d 1 0 0 = 6 7 and so on.
Log in to reply
@Chew-Seong Cheong , sir can you please explain the property that you used here-
( 5 0 − 1 ) 2 0 0 ( 5 0 − 1 ) 3 2 7 3 ( 1 0 − 1 ) 4 0 0 ( 1 0 − 1 ) 6 0 ( 1 0 − 1 ) 7 (mod 10000)
≡ ( 1 ) ( − 1 6 0 0 + 1 ) ( 3 4 3 ) ( − 4 0 0 0 + 1 ) ( 7 0 0 0 − 6 0 0 + 1 ) ( − 3 5 0 0 0 0 + 3 5 0 0 − 2 1 0 0 + 7 0 − 1 ) (mod 10000)
Log in to reply
@Shreyansh Mukhopadhyay – Using binomial theorem: ( 5 0 − 1 ) 2 0 0 = 5 0 2 0 0 − 2 0 0 ( 5 0 1 9 9 ) + 2 2 0 0 ( 1 9 9 ) 5 0 1 9 8 − ⋯ − 2 0 0 ( 5 0 ) + 1 . Note that all terms accept the last one are divisible by 10000, therefore ( 5 0 − 1 ) 2 0 0 m o d 1 0 0 0 0 = 1 . For ( 5 0 − 1 ) 3 2 , only the last two terms ( − 1 6 0 0 + 1 ) are not divisible by 10000. And so on.
Log in to reply
@Chew-Seong Cheong – Thanks a lot sir.
Log in to reply
@Shreyansh Mukhopadhyay – There was a typo in − 3 5 0 0 0 0 + 3 5 0 0 − 2 1 0 0 + 7 0 − 1 . I have changed it.
Problem Loading...
Note Loading...
Set Loading...
Let the number given be N . We need to find N m o d 1 0 0 0 0 . Since g cd ( 6 3 , 2 , 5 ) = 1 , we can use Euler's theorem and Carmichael lambda function . The required Carmichael lambda values λ ( 1 0 0 0 0 ) = 5 0 0 , λ ( 5 0 0 ) = 1 0 0 , λ ( 1 0 0 ) = 2 0 , λ ( 2 0 ) = 4 , λ ( 4 ) = 2 and λ ( 2 ) = 1 . Then, we have:
N = 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 m o d 1 m o d 2 m o d 4 m o d 2 0 m o d 1 0 0 m o d 5 0 0 (mod 10000)
Starting from 6 3 ≡ 0 (mod 1) . Then 6 3 0 ≡ 1 (mod 2) , 6 3 1 ≡ 3 (mod 4) , 6 3 3 ≡ ( 6 0 + 3 ) 3 ≡ 7 (mod 20) ,
6 3 7 ≡ ( 6 0 + 3 ) 7 ≡ 2 0 × 3 6 + 3 7 ≡ 9 3 ( 2 3 ) ≡ ( 1 0 − 1 ) 3 ( 2 3 ) ≡ 2 9 ( 2 3 ) ≡ 6 7 (mod 100)
6 3 6 7 ≡ ( 5 0 − 1 ) 3 0 ( 5 0 − 1 ) 3 7 ( 1 0 − 1 ) 5 0 ( 1 0 − 1 ) 1 5 9 2 ≡ 1 4 9 ( 7 ) 1 4 9 ( 8 1 ) ≡ 4 6 7 (mod 500)
6 3 4 6 7 ≡ ( 5 0 − 1 ) 2 0 0 ( 5 0 − 1 ) 3 2 7 3 ( 1 0 − 1 ) 4 0 0 ( 1 0 − 1 ) 6 0 ( 1 0 − 1 ) 7 (mod 10000) ≡ ( 1 ) ( − 1 6 0 0 + 1 ) ( 3 4 3 ) ( − 4 0 0 0 + 1 ) ( 7 0 0 0 − 6 0 0 + 1 ) ( 3 5 0 0 0 − 2 1 0 0 + 7 0 − 1 ) (mod 10000) ≡ ( 8 4 0 1 ) ( 3 4 3 ) ( 6 0 0 1 ) ( 6 4 0 1 ) ( 2 9 6 9 ) (mod 10000) ≡ ( 1 5 4 3 ) ( 2 4 0 1 ) ( 2 9 6 9 ) (mod 10000) ≡ ( 4 7 4 3 ) ( 2 9 6 9 ) = 1 9 6 7