Trajectory of Projectile!

Which of the following is the equation of trajectory of a ground-to-ground projectile?

Details:

  • Angle of projection = θ =\theta

  • Displacement along x x- axis = x =x

  • Corresponding displacement along y y- axis = y =y

  • Acceleration due to gravity = g =g

y = x cos θ g x 2 2 u 2 tan 2 θ y=x\cos{\theta}-\dfrac{gx^2}{2u^2{\tan}^2{\theta}} y = x tan θ g x 2 2 u 2 sin 2 θ y=x\tan{\theta}-\dfrac{gx^2}{2u^2{\sin}^2{\theta}} y = x sin θ g x 2 2 u 2 tan 2 θ y=x\sin{\theta}-\dfrac{gx^2}{2u^2{\tan}^2{\theta}} y = x tan θ g x 2 2 u 2 cos 2 θ y=x\tan{\theta}-\dfrac{gx^2}{2u^2{\cos}^2{\theta}} y = x cos θ g x 2 2 u 2 sin 2 θ y=x\cos{\theta}-\dfrac{gx^2}{2u^2{\sin}^2{\theta}} y = x sin θ g x 2 2 u 2 cos 2 θ y=x\sin{\theta}-\dfrac{gx^2}{2u^2{\cos}^2{\theta}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aryan Sanghi
Jul 13, 2020

Eliminate t t from x = u t cos θ , y = u t sin θ 1 2 g t 2 x = ut\cos\theta, y = ut\sin\theta - \frac12gt^2 and you'll get

y = x tan θ g x 2 2 u 2 cos 2 θ y = x\tan\theta - \frac{gx^2}{2u^2\cos^2\theta}

Extending the equation

y = x tan θ g x 2 2 u 2 cos 2 θ y = x\tan\theta - \frac{gx^2}{2u^2\cos^2\theta}

y = x tan θ ( 1 g x 2 u 2 cos 2 θ × tan θ ) y = x\tan\theta\bigg(1 - \frac{gx}{2u^2\cos^2\theta × \tan\theta}\bigg)

y = x tan θ ( 1 g x 2 u 2 cos θ × sin θ ) y = x\tan\theta\bigg(1 - \frac{gx}{2u^2\cos\theta × \sin\theta}\bigg)

y = x tan θ ( 1 x u 2 sin 2 θ g ) y = x\tan\theta\bigg(1 - \frac{x}{\frac{u^2\sin2\theta}{g}}\bigg)

y = x tan θ ( 1 x R ) where R is Range Of Projectile \color{#3D99F6}{\boxed{y = x\tan\theta\bigg(1 - \frac{x}{R}\bigg)}} \text{ where R is Range Of Projectile}

Thanks for sharing the proof!

Vinayak Srivastava - 11 months ago

Log in to reply

I didn't give the proof, just extended the equation. :)

Aryan Sanghi - 11 months ago

Log in to reply

Yes, but I was confused of extension and where R came in, now I understand that is because 2 sin θ cos θ = sin 2 θ 2\sin{\theta}\cos{\theta}=\sin{2\theta} . Thanks!

Vinayak Srivastava - 11 months ago

Log in to reply

@Vinayak Srivastava Ohk. You're welcome.

Aryan Sanghi - 11 months ago

For sin,cos and tan, you may use \sin{\theta},\cos{\theta} and \tan{\theta} to get : sin θ , cos θ , tan θ \sin{\theta},\cos{\theta},\tan{\theta}

Vinayak Srivastava - 11 months ago

Eliminating the parameter time from the equations of motion of a projectile :

x = u t cos θ , y = u t sin θ 1 2 g t 2 x=ut\cos \theta, y=ut\sin \theta -\dfrac 12 gt^2 , we get the result easily.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...