How does this relate to Pie?

Algebra Level 1

1 x + 1 x 2 + 1 x 3 = 3.1415926 \large \frac{1}{\color{#EC7300} x}+\frac{1}{\color{#EC7300} {x^{2}}}+\frac{1}{\color{#EC7300} {x^{3}}}=\sqrt{\color{#3D99F6} {3.1415926}}

If x x satisfy the above equation, what is the value of ( x 2015 × x 2010 ) × ( x 1945 × x 2080 ) \large \sqrt{(x^{2015} \times x^{2010}) \times (x^{-1945} \times x^{-2080})} ?

Fun Fact

  • Take any circle, measure the ratio of its circumference to its diameter, you will get an approximate value of 3.1415926 3.1415926


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

We know that x 0 x \neq 0 in this problem, so we can multiply both sides by x 3 x^{3} . The equation will become

x 2 + x + 1 = 3.1415926 x 3 x^{2} + x + 1 = \sqrt{3.1415926}x^{3}

3.1415926 x 3 x 2 x 1 = 0 \sqrt{3.1415926}x^{3} - x^2 - x - 1 = 0

x = 25000000000000000 78539815 313938535322392905133107 + 799668057500000000 78539815 313938535322392905133107 + 182964583750000 2220660914484321 + 500 78539815 15707963 + 5000000000 78539815 6661982743452963 + 2500000 47123889 3 + 25000000000000000 78539815 313938535322392905133107 + 799668057500000000 78539815 313938535322392905133107 + 182964583750000 2220660914484321 + 500 78539815 15707963 + 5000000000 78539815 6661982743452963 + 2500000 47123889 3 + 1000 78539815 47123889 \displaystyle x = \sqrt[3]{\sqrt{{\frac{25000000000000000\sqrt{78539815}}{313938535322392905133107}}+\frac{799668057500000000\sqrt{78539815}}{313938535322392905133107}+\frac{182964583750000}{2220660914484321}}+\frac{500\sqrt{78539815}}{15707963}+\frac{5000000000\sqrt{78539815}}{6661982743452963}+\frac{2500000}{47123889}} + \sqrt[3]{-\sqrt{{\frac{25000000000000000\sqrt{78539815}}{313938535322392905133107}}+\frac{799668057500000000\sqrt{78539815}}{313938535322392905133107}+\frac{182964583750000}{2220660914484321}}+\frac{500\sqrt{78539815}}{15707963}+\frac{5000000000\sqrt{78539815}}{6661982743452963}+\frac{2500000}{47123889}} + \frac{1000\sqrt{78539815}}{47123889}

x = 1000 78539815 47123889 + 3 25000000000000000 78539815 313938535322392905133107 + 799668057500000000 78539815 313938535322392905133107 + 182964583750000 2220660914484321 + 500 78539815 15707963 + 5000000000 78539815 6661982743452963 + 2500000 47123889 3 + 25000000000000000 78539815 313938535322392905133107 + 799668057500000000 78539815 313938535322392905133107 + 182964583750000 2220660914484321 + 500 78539815 15707963 + 5000000000 78539815 6661982743452963 + 2500000 47123889 3 2 i \displaystyle x = \frac{1000\sqrt{78539815}}{47123889} + \frac{\sqrt{3}\sqrt[3]{\sqrt{{\frac{25000000000000000\sqrt{78539815}}{313938535322392905133107}}+\frac{799668057500000000\sqrt{78539815}}{313938535322392905133107}+\frac{182964583750000}{2220660914484321}}+\frac{500\sqrt{78539815}}{15707963}+\frac{5000000000\sqrt{78539815}}{6661982743452963}+\frac{2500000}{47123889}} + \sqrt[3]{-\sqrt{{\frac{25000000000000000\sqrt{78539815}}{313938535322392905133107}}+\frac{799668057500000000\sqrt{78539815}}{313938535322392905133107}+\frac{182964583750000}{2220660914484321}}+\frac{500\sqrt{78539815}}{15707963}+\frac{5000000000\sqrt{78539815}}{6661982743452963}+\frac{2500000}{47123889}}}{2}i

x = 1000 78539815 47123889 3 25000000000000000 78539815 313938535322392905133107 + 799668057500000000 78539815 313938535322392905133107 + 182964583750000 2220660914484321 + 500 78539815 15707963 + 5000000000 78539815 6661982743452963 + 2500000 47123889 3 + 25000000000000000 78539815 313938535322392905133107 + 799668057500000000 78539815 313938535322392905133107 + 182964583750000 2220660914484321 + 500 78539815 15707963 + 5000000000 78539815 6661982743452963 + 2500000 47123889 3 2 i \displaystyle x = \frac{1000\sqrt{78539815}}{47123889} - \frac{\sqrt{3}\sqrt[3]{\sqrt{{\frac{25000000000000000\sqrt{78539815}}{313938535322392905133107}}+\frac{799668057500000000\sqrt{78539815}}{313938535322392905133107}+\frac{182964583750000}{2220660914484321}}+\frac{500\sqrt{78539815}}{15707963}+\frac{5000000000\sqrt{78539815}}{6661982743452963}+\frac{2500000}{47123889}} + \sqrt[3]{-\sqrt{{\frac{25000000000000000\sqrt{78539815}}{313938535322392905133107}}+\frac{799668057500000000\sqrt{78539815}}{313938535322392905133107}+\frac{182964583750000}{2220660914484321}}+\frac{500\sqrt{78539815}}{15707963}+\frac{5000000000\sqrt{78539815}}{6661982743452963}+\frac{2500000}{47123889}}}{2}i

Plugging in the question for every values we get for sure, we get

( x 2015 × x 2010 ) × ( x 1945 × x 2080 ) = x 2015 + 2010 1945 2080 = x 0 = 1 = 1 \sqrt{(x^{2015}\times x^{2010})\times(x^{-1945}\times x^{-2080})} = \sqrt{x^{2015+2010-1945-2080}} = \sqrt{x^{0}} = \sqrt{1} = \boxed{1} ~~~

lol

I salute you!

Nihar Mahajan - 6 years, 3 months ago

Log in to reply

I too salute him

Raushan Sharma - 5 years, 9 months ago

plot twist at end

Ananda Badari - 6 years, 3 months ago

Now that's what I call "hardcore" * thumbs up * (Y).

Wee Xian Bin - 6 years, 3 months ago

Log in to reply

Hi i am Asikur Islam

Asikur Islam - 6 years, 3 months ago

If only I can upvoted more than once..... I will give you 1000 1000 upvote by now! XD

Nicholas Vincent - 6 years, 3 months ago

Finally done with other 2 complex roots. Much hard work out there XD

Samuraiwarm Tsunayoshi - 6 years, 3 months ago

Good to see your solution and now, I know XD

Andro Dellosa - 6 years, 3 months ago

Salute from me too men.

Deepak Kumar - 6 years, 3 months ago

Wow, this should have been too tiring!

Paulo Carlos - 6 years, 3 months ago

I was wondering if that is correct.

Kushal Patankar - 6 years, 3 months ago

Log in to reply

Try that by yourself and see what happens! :3

Samuraiwarm Tsunayoshi - 6 years, 3 months ago

Im...... probable

Prabhav Jain - 6 years, 3 months ago

why spend so much time on the first statement

Sambhaw Kumar - 6 years, 3 months ago

Log in to reply

@Sambhaw Kumar This is a Lvl 1 math question so I will be as detailed as possible. -w-

Samuraiwarm Tsunayoshi - 4 years, 5 months ago

Why have you choosen so long a method when you can simply solve it by product rule?? a single step ans man..!!

Muhammad Humaiz Anjum - 5 years, 8 months ago

Log in to reply

That was a sarcastic hyperbole :P

Nihar Mahajan - 5 years, 8 months ago

Log in to reply

And what exactly is that..?? ;)

Muhammad Humaiz Anjum - 5 years, 8 months ago

(ノ◕ヮ◕)ノ :・゚✧ °˖✧◝(⁰▿⁰)◜✧˖° ☆ :・ヽ(・∀・)ノ

It won't harm to take just 1-2 extra steps! (´ ω `♡)

(ノ◕ヮ◕)ノ :・゚✧ °˖✧◝(⁰▿⁰)◜✧˖° ☆ :・ヽ(・∀・)ノ

Samuraiwarm Tsunayoshi - 2 years, 11 months ago

You have my respect

Sriharsha Ch - 6 years, 3 months ago

2015 + 2010 1945 2080 = 0 2015+2010-1945-2080=0 Thus, x 0 = 1 \sqrt{x^0}=1

Gamal Sultan
Mar 1, 2015

The given expression = square root of[x^(2015 + 2010 - 1945 - 2080)] =

square root of[x^0] = 1

Sergio Estan
Feb 27, 2015

2015+2010-1945-2080=0 Therefore, x^0 = 1

Aman Kumar
Feb 27, 2015

irrespective of given condition. ans :-x^(4025-4025)= x^0=1

Nicholas Patrick
Apr 13, 2015

I'm quite shocked when I see this is level 1

It turns out doesn't have to do with pi

Savira Utami
Mar 8, 2015

it's still easy

Well, because the first statement is a decoy~ :v

Nicholas Vincent - 6 years, 3 months ago

Log in to reply

haha yap. Sekarang kelas berapa kamu?

Savira Utami - 6 years, 3 months ago

Log in to reply

yah baru kelas 3 SMP :v

Nicholas Vincent - 6 years, 3 months ago

Log in to reply

@Nicholas Vincent wih keren yaa udah solved banyak problem

Savira Utami - 6 years, 3 months ago

hey follback yaa :3

Savira Utami - 6 years, 3 months ago
Saransh Gupya
Mar 7, 2015

Vino Krishnan
Mar 5, 2015

4025-4025=0; anything power 0=1; so x power 0 also=1; and sqr root of 1 is 1. so the answer is 1.

Anna Anant
Mar 2, 2015

x^(2015+2010)=x^4025 ; x^(-1945+-2080)=x^-4025 , multiplying we will get 1 and √1=+-1

When you are taking square root, we get positive real numbers. So the answer is positive one

ramesh perumal - 6 years, 3 months ago
Kenneth Gibson
Mar 2, 2015

Rules of exponents. Enough said.

Kunchakuri Kumar
Feb 28, 2015

multiply them not more than that

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...