Trig Minimum

Geometry Level 3

1 sin 2 x + 1 cos 2 x \large \frac{1}{\sin^{2} \ x} + \frac{1}{\cos^{2} \ x }

What is the least positive value of x x (in radian measure) which would minimize the above expression?

Give your answer to 3 significant figures.


The answer is 0.7854.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aravind Vishnu
Mar 25, 2015

1 sin 2 x + 1 cos 2 x = sin 2 x + cos 2 x sin 2 x cos 2 x = 1 sin 2 x cos 2 x The minimum value of this expression is 4 at x = π 4 \frac{1}{\sin^2x} +\frac{1}{\cos^2x} = \frac{\sin^2x +\cos^2x}{\sin^2x \cos^2x}\\ = \frac{1}{\sin^2x \cos^2x}\\ \text{The minimum value of this expression is 4 at} \,x= \frac{\pi}{4}

Mikael Marcondes
Jan 26, 2015

­ ( s i n 1 ­ x ) 2 + ( c o s 1 x ­ ) 2 = ­(sin^{-1} \ ­x)^{2}+(cos^{-1} \ x­)^{2}= ­ ( 1 s i n ­ x ) 2 + ( 1 c o s ­ x ) 2 = ­ ( \frac{1}{sin \ ­x})^{2}+( \frac{1}{cos \ ­x})^{2}=

­ ( c o s 2 ­ x s i n 2 ­ x . c o s 2 ­ x ) + ( s e n 2 ­ x s i n 2 ­ x . c o s 2 ­ x ) = ­ ( \frac{cos^{2} \ ­x}{sin^{2} \ ­x \ . \ cos^{2} \ ­x})+( \frac{sen^{2} \ ­x}{sin^{2} \ ­x \ . \ cos^{2} \ ­x})= ­ ( 1 s i n 2 ­ x . c o s 2 ­ x ) = ­( \frac{1}{sin^{2} \ ­x \ . \ cos^{2} \ ­x})= ­ ( 4 4 . s i n 2 ­ x . c o s 2 ­ x ) = ­( \frac{4}{4 \ . \ sin^{2} \ ­x \ . \ cos^{2} \ ­x})=

[ 4 ( 2 . s i n ­ x . c o s ­ x ) 2 ] = \ [ \frac{4}{(2 \ . \ sin \ ­x \ . \ cos \ ­x)^{2}} \ ] = 4 s I n 2 ­ 2 x = \frac{4}{sIn^{2} \ ­2x} = 4 . c o s e c 2 ­ 2 x {4 \ . \ cosec^{2} \ ­2x}

The c o s e c n cosec \ n function has positive and negative values. When in negative range, its local maxima values are 1 -1 , and when in positive range, its local minima values are 1 1 .

c o s e c n cosec \ n function

c o s e c 2 n cosec^{2} \ n function

Thus, and taking a glance at the c o s e c n cosec \ n and c o s e c 2 n cosec^{2} \ n functions above, we get that the composite 4 . c o s e c 2 ­ 2 x {4 \ . \ cosec^{2} \ ­2x} function has 4 4 as minima values. This occur at 4 . c o s e c 2 ­ 2 x = 4 c o s e c 2 ­ 2 x = 1 c o s e c ­ 2 x = ± 1 {4 \ . \ cosec^{2} \ ­2x}=4 \rightarrow cosec^{2} \ ­2x=1 \rightarrow cosec \ ­2x= \pm \sqrt{1} \rightarrow

x { π 4 , 3 π 4 , 5 π 4 , 7 π 4 } \rightarrow x \in \{ \frac{\pi}{4}, \ \frac{3 \pi}{4}, \ \frac{5 \pi}{4}, \ \frac{7 \pi}{4} \} , for x [ 0 , 2 π [ x \in \ [ 0,\ 2 \pi \ [ . Hence, the answer is π 4 \boxed{\frac{\pi}{4}} .

4. c o s e c 2 ­ 2 x {4.cosec^{2} \ ­2x} function

How can you write s i n 1 x = 1 s i n x sin^{-1}x=\dfrac{1}{sinx} . This is wrong. And in the statement of question, you should mention whether the angle is to be taken in degree or radian. I'm adding this to the problem. @Mikael Marcondes

Sandeep Bhardwaj - 6 years, 3 months ago

Log in to reply

No, it isn't. This is only notation question. The exponent can be put between the trigonometric function and the argument or after the function and argument, closed inside parenthesis. The inverse trigonometric functions is better defined as a r c s i n ( x ) arcsin (x) .

Mikael Marcondes - 6 years, 3 months ago

Log in to reply

How can i feed this answer in answer box. How would i write pi??

himanshu mishra - 5 years, 11 months ago

Log in to reply

@Himanshu Mishra For that, calculate the value in decimals and submit that.

Sandeep Bhardwaj - 5 years, 11 months ago

I assume radians are the natural way to measure an angle, but ok, it can be specified on the statement.

Mikael Marcondes - 6 years, 3 months ago

Well, it is just to find the maximum value of s i n ( y ) sin(y) which is just 1 1 for y = π 2 y = \frac{\pi}{2} . Hence, x = π 4 x = \frac{\pi}{4}

Kartik Sharma - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...