sin ( A ) sin ( 2 A ) sin ( 3 A ) sin ( 4 A ) = a x 2 + b x 3 + c x 4 + d x 5
If sin 2 ( A ) = x and that the equation above is satisfied for constants a , b , c , d , then find the value of 1 2 a − 1 0 b + 8 c − 1 1 d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Sir, could you please explain how sin 3 A = sin A cos 2 A + sin 2 A cos A came through?
Log in to reply
sin ( A + B ) = sin A cos B + sin B cos A replace B with 2 A .
Log in to reply
Ew! I was so dumb that I failed to notice that :(
Log in to reply
@Anandhu Raj – It is okay. Sometimes we are like that.
Problem Loading...
Note Loading...
Set Loading...
sin A sin 2 A sin 3 A sin 4 A
= sin A ( 2 sin A cos A ) ( sin A cos 2 A + sin 2 A cos A ) ( 2 sin 2 A cos 2 A )
= sin A ( 2 sin A cos A ) [ sin A ( 1 − 2 sin 2 A ) + 2 sin A cos 2 A ) ] [ 4 sin A cos A ( 1 − 2 sin 2 A ) ]
= 8 sin 4 A cos 2 A ( 1 − 2 sin 2 A + 2 cos 2 A ) ( 1 − 2 sin 2 A )
= 8 x 2 ( 1 − x ) ( 1 − 2 x + 2 − 2 x ) ( 1 − 2 x ) = 8 x 2 ( 1 − x ) ( 3 − 4 x ) ( 1 − 2 x )
= 8 x 2 ( 3 − 7 x + 4 x 2 ) ( 1 − 2 x ) = 8 x 2 ( 3 − 7 x + 4 x 2 − 6 x + 1 4 x − 8 x 2 )
= 8 x 2 ( 3 − 1 3 x + 1 8 x 2 − 8 x 3 ) = 2 4 x ∗ 2 − 1 0 4 x 3 + 1 4 4 x 4 − 6 4 x 5
⇒ a = 2 4 . b = − 1 0 4 , c = 1 4 4 , d = − 6 4
⇒ 1 2 a − 1 0 b + 8 c − 1 1 d = 2 8 8 + 1 0 4 0 + 1 1 5 2 + 7 0 4 = 3 1 8 4