Trignometry - 6

Geometry Level 4

sin ( A ) sin ( 2 A ) sin ( 3 A ) sin ( 4 A ) = a x 2 + b x 3 + c x 4 + d x 5 \sin (A) \sin(2A) \sin(3A) \sin(4A) = ax^2 + bx^3 + cx^4 + dx^5

If sin 2 ( A ) = x \sin^{2}(A)= x and that the equation above is satisfied for constants a , b , c , d a,b,c,d , then find the value of 12 a 10 b + 8 c 11 d 12a - 10b +8c -11d .


The answer is 3184.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 15, 2014

sin A sin 2 A sin 3 A sin 4 A \sin{A}\sin{2A}\sin{3A}\sin{4A}

= sin A ( 2 sin A cos A ) ( sin A cos 2 A + sin 2 A cos A ) ( 2 sin 2 A cos 2 A ) =\sin{A} (2\sin{A}\cos{A})(\sin{A}\cos{2A}+\sin{2A}\cos{A})(2\sin{2A}\cos{2A})

= sin A ( 2 sin A cos A ) [ sin A ( 1 2 sin 2 A ) + 2 sin A cos 2 A ) ] [ 4 sin A cos A ( 1 2 sin 2 A ) ] =\sin{A} (2\sin{A}\cos{A})[\sin{A}(1-2\sin^2{A})+2\sin{A}\cos^2{A})][4\sin{A}\cos{A}(1-2\sin^2{A})]

= 8 sin 4 A cos 2 A ( 1 2 sin 2 A + 2 cos 2 A ) ( 1 2 sin 2 A ) =8\sin^4{A} \cos^2{A}(1-2\sin^2{A}+2\cos^2{A})(1-2\sin^2{A})

= 8 x 2 ( 1 x ) ( 1 2 x + 2 2 x ) ( 1 2 x ) = 8 x 2 ( 1 x ) ( 3 4 x ) ( 1 2 x ) =8x^2 (1-x) (1-2x+2 - 2x )(1-2x) = 8x^2 (1-x) (3-4x)(1-2x)

= 8 x 2 ( 3 7 x + 4 x 2 ) ( 1 2 x ) = 8 x 2 ( 3 7 x + 4 x 2 6 x + 14 x 8 x 2 ) =8x^2 (3 -7x +4x^2)(1-2x) = 8x^2 (3 -7x +4x^2 - 6x +14x -8x^2)

= 8 x 2 ( 3 13 x + 18 x 2 8 x 3 ) = 24 x 2 104 x 3 + 144 x 4 64 x 5 = 8x^2 (3 -13x +18x^2 -8x^3) = 24x*2 -104x^3+144x^4-64x^5

a = 24. b = 104 , c = 144 , d = 64 \Rightarrow a = 24. b= -104, c =144, d =-64

12 a 10 b + 8 c 11 d = 288 + 1040 + 1152 + 704 = 3184 \Rightarrow 12a -10b + 8c -11 d = 288+1040+1152 +704=\boxed{3184}

Sir, could you please explain how sin 3 A = sin A cos 2 A + sin 2 A cos A \sin { 3A } =\sin { A } \cos { 2A } +\sin { 2A } \cos { A } came through?

Anandhu Raj - 6 years ago

Log in to reply

sin ( A + B ) = sin A cos B + sin B cos A \sin{(A+B)} = \sin{A}\cos{B}+\sin{B}\cos{A} replace B B with 2 A 2A .

Chew-Seong Cheong - 6 years ago

Log in to reply

Ew! I was so dumb that I failed to notice that :(

Anandhu Raj - 6 years ago

Log in to reply

@Anandhu Raj It is okay. Sometimes we are like that.

Chew-Seong Cheong - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...