Trig Power Challenge

Geometry Level 3

If the value of sin 24 π 24 + cos 24 π 24 \sin^{24}\frac{\pi}{24} + \cos^{24}\frac{\pi}{24}

is expressed in simplest form as a + b c d , \dfrac{a + b\sqrt{c}}{d}, find the last three digits of a + b + c + d . a + b + c + d.

Note: Simplest form refers to the condition that a , b , c , d a,b,c,d are positive integers with gcd ( a , b , d ) = 1 \gcd(a,b,d)=1 and c c is not divisible by the square of any prime.


The answer is 590.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We know that:

cos π 6 = 3 2 2 cos 2 π 12 1 = 3 2 \cos{\frac{\pi}{6}} = \frac {\sqrt{3}}{2}\quad \Rightarrow 2\cos^2{\frac{\pi}{12}} - 1 = \frac {\sqrt{3}}{2}

2 ( 2 cos 2 π 24 1 ) 2 1 = 3 2 \Rightarrow 2(2\cos^2{\frac{\pi}{24}} -1)^2 - 1= \frac {\sqrt{3}}{2}

8 cos 4 π 24 8 cos 2 π 24 + 1 = 3 2 \Rightarrow 8\cos^4{\frac{\pi}{24}}-8\cos^2{\frac{\pi}{24}} + 1 = \frac {\sqrt{3}}{2}

16 cos 4 π 24 16 cos 2 π 24 + 2 3 = 0 \Rightarrow 16\cos^4{\frac{\pi}{24}}-16\cos^2{\frac{\pi}{24}} + 2 - \sqrt{3} = 0

cos 2 π 24 = 2 + 2 + 3 4 sin 2 π 24 = 2 2 + 3 4 \Rightarrow \cos^2{\frac{\pi}{24}} = \frac {2+\sqrt{2+\sqrt{3}}}{4}\quad \Rightarrow \sin^2{\frac{\pi}{24}} = \frac {2-\sqrt{2+\sqrt{3}}}{4}

Now,

sin 24 π 24 + cos 24 π 24 = ( sin 2 π 24 ) 12 + ( cos 2 π 24 ) 12 \sin^{24}{\frac{\pi}{24}} + \cos^{24}{\frac{\pi}{24}} = (\sin^2{\frac{\pi}{24}})^{12} + (\cos^2{\frac{\pi}{24}})^{12}

= ( 2 2 + 3 4 ) 12 + ( 2 + 2 + 3 4 ) 12 = \left( \frac {2-\sqrt{2+\sqrt{3}}}{4}\right)^{12} + \left( \frac {2+\sqrt{2+\sqrt{3}}}{4}\right)^{12}

= 1 4 12 [ ( 2 2 + 3 ) 12 + ( 2 + 2 + 3 ) 12 ] = \dfrac{1}{4^{12}} \left[ \left( 2-\sqrt{2+\sqrt{3}} \right)^{12} + \left( 2+\sqrt{2+\sqrt{3}} \right)^{12} \right]

= 2 4 12 [ 2 12 + ( 12 2 ) ( 2 10 ) ( 2 + 3 ) 2 + ( 12 4 ) ( 2 8 ) ( 2 + 3 ) 4 + ( 12 6 ) ( 2 6 ) ( 2 + 3 ) 6 + ( 12 8 ) ( 2 4 ) ( 2 + 3 ) 8 + ( 12 10 ) ( 2 2 ) ( 2 + 3 ) 10 + ( 12 12 ) ( 2 + 3 ) 12 ] = \dfrac{2}{4^{12}} \left[ 2^{12} + \begin{pmatrix} 12 \\ 2 \end{pmatrix} (2^{10}) (\sqrt{2+\sqrt{3}})^{2} + \begin{pmatrix} 12 \\ 4 \end{pmatrix} (2^{8}) (\sqrt{2+\sqrt{3}})^{4} \\ \quad +\begin{pmatrix} 12 \\ 6 \end{pmatrix} (2^{6}) (\sqrt{2+\sqrt{3}})^{6} + \begin{pmatrix} 12 \\ 8 \end{pmatrix} (2^{4}) (\sqrt{2+\sqrt{3}})^{8} \\ \quad + \begin{pmatrix} 12 \\ 10 \end{pmatrix} (2^{2}) (\sqrt{2+\sqrt{3}})^{10} + \begin{pmatrix} 12 \\ 12 \end{pmatrix} (\sqrt{2+\sqrt{3}})^{12} \right]

= 2 4 12 [ 2 12 + ( 12 2 ) ( 2 10 ) ( 2 + 3 ) + ( 12 4 ) ( 2 8 ) ( 2 + 3 ) 2 + ( 12 6 ) ( 2 6 ) ( 2 + 3 ) 3 + ( 12 8 ) ( 2 4 ) ( 2 + 3 ) 4 + ( 12 10 ) ( 2 2 ) ( 2 + 3 ) 5 + ( 12 12 ) ( 2 + 3 ) 6 ] = \dfrac{2}{4^{12}} \left[ 2^{12} + \begin{pmatrix} 12 \\ 2 \end{pmatrix} (2^{10}) (2+\sqrt{3}) + \begin{pmatrix} 12 \\ 4 \end{pmatrix} (2^{8}) (2+\sqrt{3})^{2} \\ \quad +\begin{pmatrix} 12 \\ 6 \end{pmatrix} (2^{6}) (2+\sqrt{3})^{3} + \begin{pmatrix} 12 \\ 8 \end{pmatrix} (2^{4}) (2+\sqrt{3})^{4} \\ \quad + \begin{pmatrix} 12 \\ 10 \end{pmatrix} (2^{2}) (2+\sqrt{3})^{5} + \begin{pmatrix} 12 \\ 12 \end{pmatrix} (2+\sqrt{3})^{6} \right]

= 1 8388608 [ 4096 + ( 66 ) ( 1024 ) ( 2 + 3 ) + ( 495 ) ( 256 ) ( 7 + 4 3 ) + ( 924 ) ( 64 ) ( 26 + 15 3 ) + ( 495 ) ( 16 ) ( 97 + 56 3 ) + ( 66 ) ( 4 ) ( 362 + 209 3 ) + ( 1351 + 780 3 ) ] = \dfrac{1}{8388608} \left[ 4096 + (66)(1024)(2+\sqrt{3}) +(495)(256)(7+4\sqrt{3}) \\ \quad +(924)(64)(26+15\sqrt{3}) +(495)(16)(97+56\sqrt{3}) \\ \quad +(66)(4)(362+209\sqrt{3}) + (1351+780\sqrt{3}) \right]

= 3428999 + 1960980 3 8388608 = \dfrac {3428999+1960980\sqrt{3}}{8388608}

a + b + c + d = 13778590 \Rightarrow a+b+c+d = 13778590 and the last three digits 590 \boxed{590} .

Is this the only solution? Does a less tedious solution exist for this problem?

Samarth Kapoor - 6 years ago

Log in to reply

I have tried other methods, it is as tedious.

Chew-Seong Cheong - 6 years ago

Log in to reply

Ok..Can you tell me some of the elegant methods you tried for this question which seem tedious, but may work for other problems?

Samarth Kapoor - 6 years ago

Log in to reply

@Samarth Kapoor I have used another method as shown in the solution. If you can check where did I go wrong. It is really tedious.

Chew-Seong Cheong - 6 years ago

Let k=pi/24.Form a quadratic equation whose roots are (sink)^2 and (cosk)^2.Now apply Newton sum to evaluate sum of twelth power of the roots.The calculations are very long and it requires patience to finally solve the question correctly.

You have got to be joking

Ken Garner - 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...