This is so odd

Geometry Level 2

cos ( π 11 ) cos ( 2 π 11 ) + cos ( 3 π 11 ) cos ( 4 π 11 ) + cos ( 5 π 11 ) = ? \cos\left( \frac{\pi}{11}\right) - \cos\left( \frac{2\pi}{11} \right)+ \cos\left( \frac{3\pi}{11}\right) \\ - \cos\left( \frac{4\pi}{11} \right)+ \cos\left( \frac{5\pi}{11} \right)=\ ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

汶良 林
Jul 4, 2015

Moderator note:

Oh, that's a nice trick! How did you think about it?

Oh!Excellent thinking!

Adarsh Kumar - 5 years, 11 months ago

Brilliant !!

Ahmed Obaiedallah - 5 years, 11 months ago

can you explain the jump from line 3 to line 4? thanks!

Willia Chang - 5 years, 1 month ago

Log in to reply

汶良 林 - 5 years, 1 month ago

Log in to reply

ah...ic Thanks!!!

Willia Chang - 5 years, 1 month ago

Wow, that was so smart

Pil Pinas - 4 years, 6 months ago

With the identity cos ( θ ) = cos ( π θ ) \cos(\theta)=-\cos(\pi-\theta) we can rewrite the expression:

cos ( 10 π 11 ) cos ( 2 π 11 ) cos ( 8 π 11 ) cos ( 4 π 11 ) cos ( 6 π 11 ) -\cos\left(\dfrac{10\pi}{11}\right)-\cos\left(\dfrac{2\pi}{11}\right)-\cos\left(\dfrac{8\pi}{11}\right)-\cos\left(\dfrac{4\pi}{11}\right)-\cos\left(\dfrac{6\pi}{11}\right) .

Now, let w w be a complex 11th root of unity. Then, w 11 = 1 w^{11}=1 and, factorizing: w 10 + w 9 + + w + 1 = 0 w^{10}+w^9+\cdots+w+1=0 and dividing by w 5 w^5 :

w 5 + w 5 + w 4 + w 4 + w 3 + w 3 + w 2 + w 2 + w + w 1 = 1 w^5+w^{-5}+w^4+w^{-4}+w^3+w^{-3}+w^2+w^{-2}+w+w^{-1}=-1 . But also. w k + w k = 2 cos ( 2 π k 11 ) w^k+w^{-k}=2\cos\left(\dfrac{2\pi k}{11}\right) , so we have:

2 cos ( 10 π 11 ) + 2 cos ( 8 π 11 ) + 2 cos ( 6 π 11 ) + 2 cos ( 4 π 11 ) + 2 cos ( 2 π 11 ) = 1 2\cos\left(\dfrac{10\pi}{11}\right)+2\cos\left(\dfrac{8\pi}{11}\right)+2\cos\left(\dfrac{6\pi}{11}\right)+2\cos\left(\dfrac{4\pi}{11}\right)+2\cos\left(\dfrac{2\pi}{11}\right)=-1

And finally:

cos ( 10 π 11 ) cos ( 2 π 11 ) cos ( 8 π 11 ) cos ( 4 π 11 ) cos ( 6 π 11 ) = 1 2 -\cos\left(\dfrac{10\pi}{11}\right)-\cos\left(\dfrac{2\pi}{11}\right)-\cos\left(\dfrac{8\pi}{11}\right)-\cos\left(\dfrac{4\pi}{11}\right)-\cos\left(\dfrac{6\pi}{11}\right)=\boxed{\dfrac{1}{2}}

CHALLENGE MASTER NOTE: SO GOOD!

Pi Han Goh - 5 years, 11 months ago

Log in to reply

Oh, thanks :D You're welcome.

Alan Enrique Ontiveros Salazar - 5 years, 11 months ago

Where does that identity involving w k + w k w^k+w^{-k} come from? Does it just follow from the definition of roots of unity? I haven't studied those much yet.

Ryan Tamburrino - 5 years, 11 months ago

Log in to reply

We know, by Euler's formula that e i θ = cos θ + i sin θ e^{i\theta}=\cos \theta + i\sin \theta , so we also know that e i θ = cos ( θ ) + i sin ( θ ) e^{-i\theta}=\cos(-\theta)+i\sin(-\theta) , but the cosine function is even and the sine function is odd, so e i θ = cos θ i sin θ e^{-i\theta}=\cos\theta-i\sin\theta . Adding these two identities we get: e i θ + e i θ = 2 cos θ e^{i\theta}+e^{-i\theta}=2\cos\theta

Alan Enrique Ontiveros Salazar - 5 years, 11 months ago

Log in to reply

Thank you!

Ryan Tamburrino - 5 years, 11 months ago

X = cos π 11 cos 2 π 11 + cos 3 π 11 cos 4 π 11 + cos 5 π 11 = cos π 11 + cos 9 π 11 + cos 3 π 11 + cos 7 π 11 + cos 5 π 11 Note that k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 see Proof. = 1 2 = 0.5 \begin{aligned} X & = \cos{\dfrac{\pi}{11}}\color{#3D99F6}{-\cos{\dfrac{2\pi}{11}}}+\cos{\dfrac{3\pi}{11}}\color{#3D99F6}{-\cos{\dfrac{4\pi}{11}}}+\cos{\dfrac{5\pi}{11}} \\ & = \cos{\dfrac{\pi}{11}}\color{#3D99F6}{+\cos{\dfrac{9\pi}{11}}}+\cos{\dfrac{3\pi}{11}}\color{#3D99F6}{+\cos{\dfrac{7\pi}{11}}}+\cos{\dfrac{5\pi}{11}} & \small {\color{#D61F06}\text{Note that }\sum_{k=0}^{n-1} \cos \left(\frac {2k+1}{2n+1}\pi \right) = \frac 12 \text{ see Proof.}} \\ & = {\color{#D61F06}\frac 12} = \boxed{0.5} \end{aligned}


Proof:

This is to prove that k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left(\frac {2k+1}{2n+1}\pi \right) = \frac 12

k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = { k = 0 n 1 e 2 k + 1 2 n + 1 π i } = { e π i 2 n + 1 k = 0 n 1 e 2 k π i 2 n + 1 } = { e π i 2 n + 1 1 e 2 n π i 2 n + 1 1 e 2 π i 2 n + 1 } = { e π i 2 n + 1 1 e 2 n + 1 1 π i 2 n + 1 1 e 2 π i 2 n + 1 } = { e π i 2 n + 1 1 + e π i 2 n + 1 1 e 2 π i 2 n + 1 } = { 1 + e π i 2 n + 1 e π i 2 n + 1 e π i 2 n + 1 } = { 1 + cos π 2 n + 1 i sin π 2 n + 1 2 i sin π 2 n + 1 } = 1 2 \begin{aligned} \sum_{k=0}^{n-1} \cos \left(\frac {2k+1}{2n+1}\pi \right) & = \Re \left \{ \sum_{k=0}^{n-1} e^{\frac {2k+1}{2n+1}\pi i} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \sum_{k=0}^{n-1} e^{\frac {2k \pi i}{2n+1}} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \cdot \frac {1 - e^{\frac {2n \pi i}{2n+1}}}{1 - e^{\frac {2 \pi i}{2n+1}}} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \cdot \frac {1 - e^{\frac {2n+1-1 \pi i}{2n+1}}}{1 - e^{\frac {2 \pi i}{2n+1}}} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \cdot \frac {1 + e^{- \frac {\pi i}{2n+1}}}{1 - e^{\frac {2 \pi i}{2n+1}}} \right \} \\ & = \Re \left \{\frac {1 + e^{-\frac {\pi i}{2n+1}}}{e^{-\frac {\pi i}{2n+1}} - e^{\frac {\pi i}{2n+1}}} \right \} \\ & = \Re \left \{\frac {1 + \cos \frac \pi{2n+1} - i\sin \frac \pi{2n+1}}{- 2i\sin \frac \pi{2n+1}} \right \} \\ &= \frac 12 \end{aligned}

Moderator note:

For completeness, can you explain this step:

Using Argand diagram we note that: cos 2 π 11 + cos 4 π 11 + cos 6 π 11 + cos 8 π 11 + cos 10 π 11 = 1 2 \cos{\frac{2\pi}{11}} + \cos{\frac{4\pi}{11}} +\cos{\frac{6\pi}{11}} + \cos{ \frac {8\pi} {11}} +\cos{\frac{10\pi}{11}} = -\frac{1}{2}

yes plz explain that (challenge master note) i was thinking of using argand diagram but could'nt figure it out at all how to find it's value the i had to resort to some other things . thx !

A Former Brilliant Member - 4 years, 7 months ago

Log in to reply

I have written the note to explain it. I will provide an explanation with complex number.

Chew-Seong Cheong - 4 years, 7 months ago

Log in to reply

@shubham dhull -- I have done the proof using complex numbers. See solution.

Chew-Seong Cheong - 4 years, 7 months ago

but sir , k = 1 n w k \sum _{ k=1 }^{ n }{ { w }^{ k } } = -1 not 1 .

A Former Brilliant Member - 4 years, 7 months ago

Log in to reply

Yes, there is an error. ω 4 n + 2 = 1 \omega^{4n+2} = 1 not ω 2 n + 1 = 1 \omega^{2n+1} = 1 . I will work it out again tomorrow.

Chew-Seong Cheong - 4 years, 7 months ago

Log in to reply

ohk no problem .

A Former Brilliant Member - 4 years, 7 months ago

Done! Stupid me, I forgot simple Euler's formula would do.

Chew-Seong Cheong - 4 years, 7 months ago

Log in to reply

yes thnx , that's the way i did but i wanted to do it by using argand diagram , plz tell if possible , and one thing , *you are not stupid at all , even i would say you are a genius ! *

A Former Brilliant Member - 4 years, 7 months ago

Log in to reply

@A Former Brilliant Member I sort of have explained it in this Note .

Chew-Seong Cheong - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...