Large Powers Just Vanished?

Geometry Level 1

Simplify
sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ {\sin}^6\theta + {\cos}^6\theta + 3{\sin}^2\theta{\cos}^2\theta

1 2 \frac12 1 1 1 1 2 1\frac12 2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ashish Menon
Jul 5, 2016

Relevant wiki: Proving Trigonometric Identities - Basic

sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ × 1 = ( sin 2 θ ) 3 + ( cos 2 θ ) 3 + 3 sin 2 θ cos 2 θ ( sin 2 θ + cos 2 θ ) = ( sin 2 θ + cos 2 θ ) 3 = 1 3 = 1 \begin{aligned} {\sin}^6\theta + {\cos}^6\theta + 3{\sin}^2\theta{\cos}^2\theta × 1 & = {\left({\sin}^2\theta\right)}^3 + {\left({\cos}^2\theta\right)}^3 + 3{\sin}^2\theta{\cos}^2\theta\left({\sin}^2\theta + {\cos}^2\theta\right)\\ \\ & = {\left({\sin}^2\theta + {\cos}^2\theta\right)}^3\\ \\ & = 1^3\\ \\ & = \color{#3D99F6}{\boxed{1}} \end{aligned}

A classic way to prove the equation equals 1.

but if you got to do it real quick(under 5 secs) then just put θ as 0° or 90°(even though if its not a foolproof method). and we are done.

Satyabrata Dash - 4 years, 11 months ago

Log in to reply

Thanks! Yep JEE style! But this question did not take even 5 seconds to come up with :P

Ashish Menon - 4 years, 11 months ago

Log in to reply

Ya the jee style. But still the % of solver has further decreased to 38%

Satyabrata Dash - 4 years, 11 months ago

Log in to reply

@Satyabrata Dash Hehe lol! Maybe because it appears tough :P

Ashish Menon - 4 years, 11 months ago

Haha nice way to confuse people into thinking that it is a very HARD question......I got the trick when I saw it (At that instant :>) Nice question and solution!!!(+1)

abc xyz - 4 years, 11 months ago

Log in to reply

Thanks! :) :)

Ashish Menon - 4 years, 11 months ago

Right, so only 42% got it right :P

Ashish Menon - 4 years, 11 months ago
Hung Woei Neoh
Jul 6, 2016

sin 6 θ + cos 6 θ + 3 sin 2 θ cos 2 θ = sin 6 θ + ( cos 2 θ ) 3 + 3 sin 2 θ ( 1 sin 2 θ ) = sin 6 θ + ( 1 sin 2 θ ) 3 + 3 sin 2 θ 3 sin 4 θ = sin 6 θ + 1 3 sin 2 θ + 3 sin 4 θ sin 6 θ + 3 sin 2 θ 3 sin 4 θ = 1 \sin^6 \theta+ \cos^6 \theta+3\sin^2\theta\cos^2\theta\\ =\sin^6 \theta + (\cos^2 \theta)^3 + 3\sin^2\theta(\color{magenta}{1-\sin^2\theta})\\ =\sin^6 \theta+ (\color{magenta}{1-\sin^2 \theta})^3 + 3\sin^2\theta - 3\sin^4\theta\\ =\color{#3D99F6}{\sin^6 \theta} + 1 \color{#EC7300}{-3\sin^2 \theta}\color{#D61F06}{+3\sin^4\theta}\color{#3D99F6}{-\sin^6\theta}\color{#EC7300}{+3\sin^2\theta}\color{#D61F06}{-3\sin^4\theta}\\ =\boxed{1}

Theorem used: Pythagorean Trigonometric Identity - sin 2 θ + cos 2 θ = 1 \color{magenta}{\sin^2\theta+\cos^2\theta=1}

Colors again!!

Ashish Menon - 4 years, 11 months ago

Log in to reply

Once you get used to it, it's pretty easy

Besides, a little color makes it nicer to read

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Lol, yeah :]

Ashish Menon - 4 years, 11 months ago
Oli Hohman
Jul 6, 2016

Expand ( sin 2 ( θ ) + cos 2 ( θ ) ) 3 {\left(\sin^2(\theta) + \cos^2(\theta)\right)}^3 You know that this expression is equivalent to 1, but let's see what happens when we expand, anyway!

This will leave you with

sin 6 ( θ ) + 3 sin 4 ( θ ) cos 2 ( θ ) + 3 cos 4 ( θ ) sin 2 ( θ ) + cos 6 ( θ ) \sin^6(\theta) + 3\sin^4(\theta)\cos^2(\theta) + 3\cos^4(\theta)\sin^2(\theta)+\cos^6(\theta)

The original expression contains sin 6 ( θ ) + cos 6 ( θ ) \sin^6(\theta) + \cos^6(\theta) , so let's factor out the greatest common factor (GCF) out of the two middle terms and see what we're left with:

3 sin 2 ( θ ) cos 2 ( θ ) ( sin 2 ( θ ) + cos 2 ( θ ) ) = 3 sin 2 ( θ ) cos 2 ( θ ) × 1 3\sin^2(\theta)\cos^2(\theta)(\sin^2(\theta) + \cos^2(\theta)) = 3\sin^2(\theta)\cos^2(\theta) \times 1

So the middle term matches the original expression, too, so therefore,

( sin 2 ( θ ) + cos 2 ( θ ) ) 3 = cos 6 ( θ ) + 3 sin 2 ( θ ) × cos 2 ( θ ) + sin 6 ( θ ) = 1 {\left(\sin^2(\theta)+\cos^2(\theta)\right)}^3 = \cos^6(\theta) + 3\sin^2(\theta) \times \cos^2(\theta) + \sin^6(\theta) = \boxed{1} .

Usage of latex is preferable.

Satyabrata Dash - 4 years, 11 months ago

Log in to reply

Additionally, any criticism/opinion of the solution itself, rather than the formatting?

Oli Hohman - 4 years, 11 months ago

I apologize I am not familiar with Latex yet. Do you know of a good link to help learn it?

Oli Hohman - 4 years, 11 months ago

No the solution is fine. and you can see the formatting guide and the solution writing guide(thats actually a note by mention[11:Calvin Lin]) just below the solution writing space its helpful. Latex is quite easy you will learn it eventually.

@Calvin Lin you can edit this.

Cheers!!

Satyabrata Dash - 4 years, 11 months ago

Log in to reply

@Oli Hohman, read the instructions to upload in your solution at the bottom of this comment.

Expand ( sin 2 ( θ ) + cos 2 ( θ ) ) 3 {\left(\sin^2(\theta) + \cos^2(\theta)\right)}^3 You know that this expression is equivalent to 1, but let's see what happens when we expand, anyway!

This will leave you with

sin 6 ( θ ) + 3 sin 4 ( θ ) cos 2 ( θ ) + 3 cos 4 ( θ ) sin 2 ( θ ) + cos 6 ( θ ) \sin^6(\theta) + 3\sin^4(\theta)\cos^2(\theta) + 3\cos^4(\theta)\sin^2(\theta)+\cos^6(\theta)

The original expression contains sin 6 ( θ ) + cos 6 ( θ ) \sin^6(\theta) + \cos^6(\theta) , so let's factor out the greatest common factor (GCF) out of the two middle terms and see what we're left with:

3 sin 2 ( θ ) cos 2 ( θ ) ( sin 2 ( θ ) + cos 2 ( θ ) ) = 3 sin 2 ( θ ) cos 2 ( θ ) × 1 3\sin^2(\theta)\cos^2(\theta)(\sin^2(\theta) + \cos^2(\theta)) = 3\sin^2(\theta)\cos^2(\theta) \times 1

So the middle term matches the original expression, too, so therefore,

( sin 2 ( θ ) + cos 2 ( θ ) ) 3 = cos 6 ( θ ) + 3 sin 2 ( θ ) × cos 2 ( θ ) + sin 6 ( θ ) = 1 {\left(\sin^2(\theta)+\cos^2(\theta)\right)}^3 = \cos^6(\theta) + 3\sin^2(\theta) \times \cos^2(\theta) + \sin^6(\theta) = \boxed{1} .


Instructions:-

  • Click your icon at the top right corner your screen and click "Toggle Latex" button in the dropdown menu. - Scroll to this thread and you can see the Latex.
  • Copy it and put it in your original solution by clicking the edit button.
  • Remove the words Latex and the colon : succeeding it from the pasted solution.
  • Preview the solution and you can see your solution LaTeXed!!

Cheers!

Ashish Menon - 4 years, 11 months ago

Log in to reply

Latex is cool. Well are you a moderator or not??

Satyabrata Dash - 4 years, 11 months ago

Log in to reply

@Satyabrata Dash Nope, I am not a moderator.

Ashish Menon - 4 years, 11 months ago

@Ashish Siva Wow, thank you so much! That was a great help! I edited the solution!

Oli Hohman - 4 years, 11 months ago

Log in to reply

My pleasure :)

Ashish Menon - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...