Evaluate:
2 c o s 2 1 + 2 c o s 2 2 + 2 c o s 2 3 + 2 c o s 2 4 + 2 c o s 2 5 + . . . + 2 c o s 2 9 0
− − − − − −
Note: All are in degrees.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
where is cos90?
Log in to reply
cos 9 0 ∘ = 0 .
Log in to reply
oh. hahahaha. stupid question. thanks by the way
Solution:
That equation can be simplified to:
2 c o s 2 1 + 2 c o s 2 8 9 + 2 c o s 2 2 + 2 c o s 2 8 8 + . . . + 2 c o s 2 4 4 + 2 c o s 2 4 6 + 2 c o s 2 4 5
-> 2 c o s 2 1 + 2 c o s 2 8 9 + 2 c o s 2 2 + 2 c o s 2 8 8 + . . . + 2 c o s 2 4 4 + 2 c o s 2 4 6 + 2 c o s 2 4 5
Since s i n 2 θ = c o s 2 ( 9 0 − θ ) , then, the equation above is simply equal to:
-> ( 2 c o s 2 ( 1 ) + 2 s i n 2 ( 1 ) ) + ( 2 s i n 2 ( 2 ) + 2 s i n 2 ( 2 ) ) + . . . + ( 2 c o s 2 ( 4 4 ) + 2 s i n 2 ( 4 4 ) ) + ( 2 c o s 2 ( 4 5 ) )
Also, s i n 2 θ + c o s 2 θ = 1 , then,
-> 2 ∗ 8 9 / 2
-> 8 9
That's a Brilliant Solution!
Problem Loading...
Note Loading...
Set Loading...
Note that cos θ = sin ( 2 π − θ )
∴ 2 cos 2 ( 1 ) + 2 cos 2 ( 2 ) + . . . + 2 cos 2 ( 8 9 ) + 2 cos 2 ( 8 9 ) + 2 cos 2 ( 9 0 )
= 2 [ ( cos 2 ( 1 ) + cos 2 ( 8 9 ) ) + ( cos 2 ( 2 ) + cos 2 ( 8 8 ) ) + . . . + ( cos 2 ( 4 3 ) + cos 2 ( 4 7 ) ) + ( cos 2 ( 4 4 ) + cos 2 ( 4 6 ) ) ] + 2 c o s 2 ( 4 5 )
= 2 [ ( cos 2 ( 1 ) + sin 2 ( 1 ) ) + ( cos 2 ( 2 ) + sin 2 ( 2 ) ) + . . . + ( cos 2 ( 4 3 ) + sin 2 ( 4 3 ) ) + ( cos 2 ( 4 4 ) + sin 2 ( 4 4 ) ) ] + 2 ( 2 1 ) 2
= 2 ( 4 4 ) + 1 = 8 9