Trigo Time...

Geometry Level 3

Evaluate:

2 c o s 2 1 + 2 c o s 2 2 + 2 c o s 2 3 + 2 c o s 2 4 + 2 c o s 2 5 + . . . + 2 c o s 2 90 2cos^{2}1 + 2cos^{2}2 + 2cos^{2}3 + 2cos^{2}4 + 2cos^{2}5 + ... + 2cos^{2}90

------

Note: All are in degrees.


The answer is 89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Omkar Kulkarni
Jan 24, 2015

Note that cos θ = sin ( π 2 θ ) \cos \theta = \sin \left (\frac {\pi}{2} - \theta\right)

2 cos 2 ( 1 ) + 2 cos 2 ( 2 ) + . . . + 2 cos 2 ( 89 ) + 2 cos 2 ( 89 ) + 2 cos 2 ( 90 ) \therefore 2\cos^{2}(1) + 2\cos^{2} (2) + ... + 2\cos ^{2} (89) + 2\cos^{2} (89) + 2\cos^{2} (90)

= 2 [ ( cos 2 ( 1 ) + cos 2 ( 89 ) ) + ( cos 2 ( 2 ) + cos 2 ( 88 ) ) + . . . + ( cos 2 ( 43 ) + cos 2 ( 47 ) ) + ( cos 2 ( 44 ) + cos 2 ( 46 ) ) ] + 2 c o s 2 ( 45 ) = 2[(\cos^{2}(1) + \cos^{2}(89)) + (\cos^{2}(2) + \cos^{2}(88)) + ... + (\cos^{2}(43) + \cos^{2}(47)) + (\cos^{2}(44) + \cos^{2} (46))] + 2cos^{2} (45)

= 2 [ ( cos 2 ( 1 ) + sin 2 ( 1 ) ) + ( cos 2 ( 2 ) + sin 2 ( 2 ) ) + . . . + ( cos 2 ( 43 ) + sin 2 ( 43 ) ) + ( cos 2 ( 44 ) + sin 2 ( 44 ) ) ] + 2 ( 1 2 ) 2 = 2[(\cos^{2}(1) + \sin^{2}(1)) + (\cos^{2}(2) + \sin^{2}(2)) + ... + (\cos^{2}(43) + \sin^{2}(43)) + (\cos^{2}(44) + \sin^{2} (44))] + 2\left(\frac {1}{\sqrt{2}}\right)^{2}

= 2 ( 44 ) + 1 = 89 = 2(44) + 1 = \boxed{89}

where is cos90?

Renz Mina - 5 years, 10 months ago

Log in to reply

cos 9 0 = 0 \cos 90^{\circ} = 0 .

Omkar Kulkarni - 5 years, 10 months ago

Log in to reply

oh. hahahaha. stupid question. thanks by the way

Renz Mina - 5 years, 10 months ago

Log in to reply

@Renz Mina Hahaa :D

Welcome!

Omkar Kulkarni - 5 years, 10 months ago
Christian Daang
Jan 26, 2015

Solution:

That equation can be simplified to:

2 c o s 2 1 + 2 c o s 2 89 + 2 c o s 2 2 + 2 c o s 2 88 + . . . + 2 c o s 2 44 + 2 c o s 2 46 + 2 c o s 2 45 2cos^{2}1 + 2cos^{2}89 + 2cos^{2}2 + 2cos^{2}88 + ... + 2cos^{2}44 + 2cos^{2}46 + 2cos^{2}45

-> 2 c o s 2 1 + 2 c o s 2 89 + 2 c o s 2 2 + 2 c o s 2 88 + . . . + 2 c o s 2 44 + 2 c o s 2 46 + 2 c o s 2 45 2cos^{2}1 + 2cos^{2}89 + 2cos^{2}2 + 2cos^{2}88 + ... + 2cos^{2}44 + 2cos^{2}46 + 2cos^{2}45

Since s i n 2 θ = c o s 2 ( 90 θ ) sin^{2}\theta = cos^{2}(90-\theta) , then, the equation above is simply equal to:

-> ( 2 c o s 2 ( 1 ) + 2 s i n 2 ( 1 ) ) + ( 2 s i n 2 ( 2 ) + 2 s i n 2 ( 2 ) ) + . . . + ( 2 c o s 2 ( 44 ) + 2 s i n 2 ( 44 ) ) + ( 2 c o s 2 ( 45 ) ) (2cos^{2}(1) + 2sin^{2}(1)) + (2sin^{2}(2) + 2sin^{2}(2)) + ... + (2cos^{2}(44) + 2sin^{2}(44)) + (2cos^{2}(45))

Also, s i n 2 θ + c o s 2 θ = 1 sin^{2}\theta + cos^{2}\theta = 1 , then,

-> 2 89 / 2 2*89/2

-> 89 \boxed{89}

That's a Brilliant Solution!

Muhammad Arifur Rahman - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...