Trigonometric Integration

Calculus Level 5

0 π / 2 0 π / 2 ( 1 + cos ( x y ) + cos ( x + y ) cos ( x y ) + cos ( x + y ) ) d x d y \displaystyle\int_0^{\pi/2}\int_0^{\pi/2}\left(\sqrt{1+\cos(x-y)+\cos(x+y)\cos(x-y)+\cos(x+y)}\right)\mathrm{d}x~\mathrm{d}y

If the above expression can be simplified to α π ψ \large \color{#D61F06}{\alpha}\pi^{\color{#69047E}{\large\psi}} for some α , ψ Z \large\color{#D61F06}{\alpha},\color{#69047E}{\psi}\in\mathbb{Z} ,then:

( α + ψ + 6 ) ( α ψ ) ! = ? \Large(\color{#D61F06}{\alpha}+\color{#69047E}{\psi}+6)^{(\color{#D61F06}{\alpha}-\color{#69047E}{\psi})!}=\ ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Apr 21, 2016

cos ( x y ) + cos ( x + y ) = 2 cos x cos y \bullet\cos(x-y)+\cos(x+y)=2\cos x\cos y cos ( x + y ) cos ( x y ) = cos 2 x sin 2 y \bullet\cos(x+y)\cos(x-y)=\cos^2x-\sin^2y 1 + cos ( x + y ) cos ( x y ) = cos 2 x + cos 2 y \implies 1+\cos(x+y)\cos(x-y)=\cos^2x+\cos^2y The integration is therefore : 0 π / 2 0 π / 2 ( cos 2 x + 2 cos x cos y + cos 2 y ) d x d y \displaystyle\int_0^{\pi/2}\int_0^{\pi/2}\left(\sqrt{\cos^2x+2\cos x\cos y+\cos^2y}\right)\mathrm{d}x~\mathrm{d}y = 0 π / 2 0 π / 2 ( cos x + cos y ) d x d y =\displaystyle\int_0^{\pi/2}\int_0^{\pi/2}(\cos x+\cos y)\mathrm{d}x~\mathrm{d}y

= y sin x + x sin y ( 0 , 0 ) ( π / 2 , π / 2 ) \Large=\left|y\sin x+x\sin y\right|_{\small{(0,0)}}^{\small{(\pi/2,\pi/2)}} = π \Large =\pi


( α + ψ + 6 ) ( α ψ ) ! = 8 1 = 8 \large(\color{#D61F06}{\alpha}+\color{#69047E}{\psi}+6)^{(\color{#D61F06}{\alpha}-\color{#69047E}{\psi})!}=8^1=\huge\boxed{8}

I agree with your identities but the question has 1 c o s ( x y ) + c o s ( x + y ) c o s ( x y ) c o s ( x + y ) 1-cos(x-y)+cos(x+y)cos(x-y)-cos(x+y) which should be equal to 1 + c o s ( x + y ) c o s ( x y ) [ c o s ( x + y ) + c o s ( x y ) ] 1+cos(x+y)cos(x-y)-[cos(x+y)+cos(x-y)] And after that it is c o s 2 x + c o s 2 y 2 c o s x c o s y cos^2x+cos^2y-2cosxcosy And when you solve after this the integral is equal to 0 0 . Please check the question once again bro.

Rudraksh Shukla - 5 years, 1 month ago

Log in to reply

Thanks I have made the correction... There was a typo...

Rishabh Jain - 5 years, 1 month ago

Log in to reply

Welcome, keep posting nice problems!

Rudraksh Shukla - 5 years, 1 month ago

Log in to reply

@Rudraksh Shukla Oh.... Thanks... I surely will... :-)

Rishabh Jain - 5 years, 1 month ago

The integrand would have been cos x cos y |\cos x - \cos y| , which has nonzero integral 4 π 4-\pi ....

Mark Hennings - 5 years, 1 month ago

Log in to reply

Hasn't the question been a bit tougher when asked to calculate the same double integral in the question for cos x cos y |\cos x-\cos y| instead of cos x + cos y |\cos x+\cos y| ..... I don't have a good knowledge of double integrals but anyways is there a way for calculating 0 π / 2 0 π / 2 cos x cos y d x d y \displaystyle\int_0^{\pi/2}\int_0^{\pi/2}|\cos x-\cos y|\mathrm{d}x\mathrm{d}y ... Most importantly how will that mod sign be removed...

Rishabh Jain - 5 years, 1 month ago

Log in to reply

@Rishabh Jain Split the square up into the two triangular regions with x > y x>y and x < y x<y , so that 0 1 2 π 0 1 2 π cos x cos y d x d y = x > y ( cos y cos x ) d x d y + x < y ( cos x cos y ) d x d y \int_0^{\frac12\pi}\int_0^{\frac12\pi} |\cos x - \cos y|\,dx\,dy \; = \; \iint_{x>y} (\cos y - \cos x)\,dx\,dy + \iint_{x < y} (\cos x - \cos y)\,dx\,dy Each of the "triangular" integrals (which no longer involve the modulus function) can be evaluated iteratively, with x > y ( cos y cos x ) d x d y = 0 1 2 π d x 0 x ( cos y cos x ) d y = 0 1 2 π d x [ sin y y cos x ] y = 0 x = 0 1 2 π ( sin x x cos x ) d x = 1 0 1 2 π x cos x d x = 1 [ cos x + x sin x ] 0 1 2 π = 2 1 2 π \begin{array}{rcl} \displaystyle \iint_{x > y} (\cos y - \cos x)\,dx\,dy & = & \displaystyle \int_0^{\frac12\pi}\,dx \int_0^x (\cos y - \cos x)\,dy \\ & = & \displaystyle \int_0^{\frac12\pi}dx\, \Big[\sin y - y \cos x\Big]_{y=0}^x \; = \; \int_0^{\frac12\pi} (\sin x - x \cos x)\,dx \\ & = & \displaystyle 1 - \int_0^{\frac12\pi} x \cos x\,dx \; = \; 1 - \Big[\cos x + x\sin x\Big]_0^{\frac12\pi} \\ & = & 2 - \tfrac12\pi \end{array} Swapping x x and y y shows that the second integral is equal to the same amount (using symmetry). Thus the total integral is 4 π 4 - \pi .

Mark Hennings - 5 years, 1 month ago

Log in to reply

@Mark Hennings Great stuff... Your calculus skills are really great... Thanks for the solution.... :-)

Rishabh Jain - 5 years, 1 month ago

Log in to reply

@Rishabh Jain Is it intended to confuse? α \alpha = ψ \psi = 1. Coz I was a bit nervous there.

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon Yep.... ;-)

Rishabh Jain - 5 years ago

Log in to reply

@Rishabh Jain Cheeky nerd! ;)

Ashish Menon - 5 years ago

Could you provide a solution for the same

Rudraksh Shukla - 5 years, 1 month ago

great question .. thankyou for posting wasnt that difficult as it seems.

Pawan pal - 4 years, 11 months ago

Log in to reply

Hehe yeah, its a nice question, way to go @Rishabh Cool

Ashish Menon - 4 years, 11 months ago

Log in to reply

Thanks :-)

Rishabh Jain - 4 years, 11 months ago

Yep... It appears scary... But just uses some basic knowledge :-)

Rishabh Jain - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...