Trigonometric Values?

Geometry Level 4

cos 2 7 3 + cos 2 4 7 + cos 7 3 cos 4 7 \large \ \cos^{2} 73^{\circ} \ + \ \cos^{2} 47^{\circ} \ + \ \cos 73^{\circ} \cos 47^{\circ}

If the value of the above expression is equal to a b \dfrac {a}{b} , where a a and b b are coprime positive integers , find a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jun 17, 2016

K = cos 2 7 3 + cos 2 4 7 P + cos 7 3 cos 4 7 L \mathcal K=\underbrace{ \cos^{2} 73^{\circ} + \cos^{2} 47^{\circ}}_{\mathcal P} + \underbrace{\cos 73^{\circ}\cdot\cos 47^{\circ}}_{\mathcal L} L = cos 7 3 cos 4 7 = 1 2 ( cos 12 0 1 2 + cos 2 6 ) = 1 4 + 1 2 cos 2 6 \small{ \begin{aligned}\mathcal L=\cos 73^{\circ}\cdot\cos 47^{\circ}=&\dfrac 12\left(\underbrace{\cos 120^{\circ}}_{\frac{-1}2}+\cos 26^{\circ}\right)\\=&\dfrac{-1}{4}+\dfrac 12\cos 26^{\circ}\end{aligned}}

P = cos 2 7 3 + cos 2 4 7 = 1 + cos 2 7 3 sin 2 4 7 ( ) = 1 + cos ( 7 3 + 4 7 ) 1 2 cos ( 7 3 4 7 ) = 1 1 2 cos 2 6 \small{\begin{aligned}\mathcal P=\cos^{2} 73^{\circ} + \cos^{2} 47^{\circ}=& 1+\color{#20A900}{\cos^{2} 73^{\circ} - \sin^{2} 47^{\circ}}~(**)\\=&1+\color{#20A900}{\underbrace{\cos (73^{\circ}+47^{\circ})}_{\color{#333333}{\dfrac{-1}2}}\cos (73^{\circ}-47^{\circ})}\\=&1-\dfrac 12 \cos 26^{\circ}\end{aligned}}

Hence ,

K = L + P = 1 1 4 = 3 4 \large \mathcal{K=L+P}=1-\dfrac 14=\dfrac{3}{4}

3 + 4 = 7 \huge \therefore 3+4=\boxed{\color{#007fff}{7}}

cos 2 A sin 2 B = cos ( A + B ) cos ( A B ) \boxed{\color{#20A900}{\small{\cos^2 A-\sin^2 B=\cos(A+B)\cos(A-B)}}}

PROOF:- \small{\color{grey}{\text{PROOF:-}}}

LHS:- 1 + cos 2 A 2 1 cos 2 B 2 \text{LHS:- }\small{\dfrac{1+\cos 2A}{2}-\dfrac{1-\cos 2B}{2}} = cos 2 A + cos 2 B = cos ( A + B ) cos ( A B ) \small{=\cos 2A+\cos 2B=\cos(A+B)\cos(A-B)}

Rishabh Jain - 4 years, 12 months ago

Why do you always go for a long solution ? :P ... Look at This one

cos 2 7 3 + cos 2 4 7 + cos 7 3 cos 4 7 ( cos 7 3 + cos 4 7 ) 2 cos 7 3 cos 4 7 2 2 ( 2 cos 6 0 cos 1 3 ) 2 1 2 ( cos 12 0 1 2 + cos 2 6 2 cos 2 1 3 1 ) cos 2 1 3 + 1 4 cos 2 1 3 + 1 2 = 3 4 3 + 4 = 7 \cos^2{73^{\circ}}+\cos^2{47^{\circ}}+\cos{73^{\circ}} \cdot \cos{47^{\circ}} \implies \left(\cos{73^{\circ}}+\cos{47^{\circ}} \right)^2-\cos{73^{\circ}}\cos{47^{\circ}}\cdot\dfrac{2}{2} \\ \left( 2\cos{60^{\circ}}\cdot\cos{13^{\circ}}\right)^2-\dfrac{1}{2}\left( \underbrace{\cos{120^{\circ}}}_{-\frac12}+\underbrace{\cos{26^{\circ}}}_{2\cos^2{13^{\circ}}-1}\right) \\ \cos^2{13^{\circ}}+\dfrac{1}{4}-\cos^2{13^{\circ}}+\dfrac{1}{2} = \boxed{\dfrac34} \\ 3+4=\boxed{7}

Sabhrant Sachan - 4 years, 12 months ago

Log in to reply

Lol one line for L \mathfrak L and two lines for P \mathcal P doesnt make the solution long.... :-) . I always do these type of questions without pen and paper but its always hard to explain it to others... And I well could have combined without evaluating P \mathcal P and L \mathcal L separately but I did it to provide better clarity but if that makes the solution long no problem and BTW that proof was added just for fun ... :-)

Rishabh Jain - 4 years, 12 months ago

Log in to reply

i agree with you :-) ,but think about the others who are weak in trigonometry . you gave Jee-Advanced ?

Sabhrant Sachan - 4 years, 12 months ago

Log in to reply

@Sabhrant Sachan Said many times on brilliant... Leave it (Jee Adv) ....

Rishabh Jain - 4 years, 12 months ago

How did you evaluated P \mathcal {P} ? @Rishabh Cool

Rishabh Tiwari - 4 years, 12 months ago

Log in to reply

I've added the proof :-)

Rishabh Jain - 4 years, 12 months ago

Log in to reply

Ok thanx , you mistook and wrote cos 2 4 7 \cos^{2}47^{\circ} instead of sin 2 4 7 \sin^{2} 47^{\circ} , that's what confused me. Btw perfect solution ! (+1)! What was your rank in Jee-Advanced?

Rishabh Tiwari - 4 years, 12 months ago

Log in to reply

@Rishabh Tiwari Leave it..

Rishabh Jain - 4 years, 12 months ago

Even

c o s 2 ( θ ) + c o s 2 ( 120 θ ) + c o s ( θ ) . c o s ( 120 θ ) cos^{2}(\theta) + cos^{2}(120- \theta) + cos(\theta).cos(120-\theta) = 0.75 0.75 .

Aakash Khandelwal - 4 years, 12 months ago
Rajen Kapur
Apr 22, 2017

Use: c 2 = a 2 + b 2 + a b c^2 = a^2 + b^2 + ab where side c is given in terms of sides a and b having an enclosed angle of 12 0 120^{\circ} . Now given that, a = c o s 7 3 = s i n 1 7 a= cos73^{\circ}=sin17^{\circ} and b = c o s 4 7 = s i n 4 3 b=cos47^{\circ}=sin43^{\circ} of a triangle which has c = s i n 12 0 = 3 2 c=sin120^{\circ}=\dfrac{\sqrt{3}}{2} by Law of sines. Hence c 2 = 3 4 c^2=\dfrac{3}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...