Tricky Trig

Geometry Level 3

sin θ + cos θ = 2 sin ( 9 0 θ ) , cot θ = ? \sin\theta+\cos\theta=\sqrt{2}\sin(90^{\circ}-\theta), \quad \cot\theta = \, ?

Give your answer to the above problem to 3 decimal places.


The answer is 2.414.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Trevor Arashiro
Feb 17, 2015

sin ( 90 x ) = cos ( x ) \sin(90-x)=\cos(x)

Using this identity

sin ( x ) + cos ( x ) = 2 cos ( x ) \sin(x)+\cos(x)=\sqrt2\cos(x)

sin ( x ) + cos ( x ) cos ( x ) = 2 \dfrac{\sin(x)+\cos(x)}{\cos(x)}=\sqrt2

sin ( x ) cos ( x ) + cos ( x ) cos ( x ) = 2 \dfrac{\sin(x)}{\cos(x)}+\dfrac{\cos(x)}{\cos(x)}=\sqrt2

Remember

sin ( x ) cos ( x ) = tan ( x ) \dfrac{\sin(x)}{\cos(x)}=\tan(x)

tan ( x ) + 1 = 2 \therefore \tan(x)+1=\sqrt2

tan ( x ) = 2 1 \tan(x)=\sqrt2-1

cot ( x ) = 1 2 1 2.414 \cot(x)=\cfrac{1}{\sqrt2-1}\approx 2.414

Thank you :)

Jamaica Marie Mercado - 6 years, 3 months ago

How can you divide by a variable? what if cos x is 0?

Ahmad Khamis - 5 years, 9 months ago

Log in to reply

You can easily prove that cos x 0 \cos{x}\neq0 . Let's say if otherwise cos x = 0 \cos {x}=0 , substitute it into the original equation you get sin x = 0 \sin {x}=0 , however sin 2 x + cos 2 x = 0 1 \sin ^2{x}+\cos^2 {x} =0\neq1 , this is a contradiction. So cos x 0 \cos{x}\neq0 .

Kenneth Tan - 5 years, 8 months ago

Whats wrong here ? Sin(x)cos(45) + cos(x)sin(45) =sin(90-x) Sin(45+x)=sin(90-x) Or 2x=45 X=45/2 Cot(45/2)= 1.7926

Purushottam Gupta - 5 years, 8 months ago

Done with same approach.. Best of luck :)

Atanu Ghosh - 5 years, 2 months ago

Looks easy but when you tries to solve, it becomes hard!!! but once again it becomes easy when you looks at the solution!!!

Purhan Kaushik - 6 years, 3 months ago

Log in to reply

Gotta know your identities

Hero Miles - 6 years, 3 months ago

I got the right ans. i.e sqrt2 +1. But i approxed it to 2.41 just two decimal places and its says your ans. Is incorrect. Wth.

Yajur Phullera - 5 years, 9 months ago
Ananda Badari
Feb 19, 2015

sin θ + cos θ = 2 sin ( 90 ° θ ) \sin\theta + \cos\theta = \sqrt{2}\sin(90°-\theta)

sin θ + cos θ = 2 cos θ \sin\theta + \cos\theta = \sqrt{2}\cos\theta

sin θ = ( 2 1 ) cos θ \sin\theta = (\sqrt{2}-1)\cos\theta

1 2 1 = cos θ sin θ \frac{1}{\sqrt{2}-1} = \frac{\cos\theta}{\sin\theta}

2 + 1 1 = cot θ \frac{\sqrt{2}+1}{1} = \cot\theta

= > cot θ = 1.414... + 1 =>\cot\theta = 1.414... + 1

cot θ 2.414 \cot\theta \approx \boxed{2.414}

Mansi Desai
Feb 17, 2015

sin x + cos x=2^1/2 sin (90-x)

because of sin (90-x)= cos x,

sin x + cos x=2^1/2 cos x

dividing terms with sin x,

sin x/sin x + cos x/sin x=2^1/2 cos x/sin x

1+cot x=2^1/2 cot x

1= (2^1/2-1) cot x

cot x =2.41

Whats wrong here ? Sin(x)cos(45) + cos(x)sin(45) =sin(90-x) Sin(45+x)=sin(90-x) Or 2x=45 X=45/2 Cot(45/2)= 1.7926

Purushottam Gupta - 5 years, 8 months ago

Log in to reply

What's wrong is that you can't jump from sin ( 4 5 + x ) = sin ( 9 0 x ) \sin(45^{\circ}+x)=\sin(90^{\circ}-x) to 4 5 + x = 9 0 x 45^{\circ}+x=90^{\circ}-x .

Omkar Kulkarni - 5 years, 8 months ago

Log in to reply

so whats the right step after that ? please tell me ! thanks !

Purushottam Gupta - 5 years, 7 months ago

Log in to reply

@Purushottam Gupta From there, you could take sin ( 9 0 x ) \sin(90^\circ-x) to the RHS and simplify, but I don't see any efficient method from there.

Omkar Kulkarni - 5 years, 6 months ago
Ridho Kaspari
Feb 24, 2015

Whats wrong here ? Sin(x)cos(45) + cos(x)sin(45) =sin(90-x) Sin(45+x)=sin(90-x) Or 2x=45 X=45/2 Cot(45/2)= 1.7926

Purushottam Gupta - 5 years, 8 months ago
Gagan Raj
Feb 17, 2015

Given ,

sin x + cos x = root(2) sin (90 - x) = root(2) cos x

sin x = root(2) cos x - cos x

Taking out cos x common from the RHS we get ,

sin x = cos x ( root(2) - 1)

sin x / cos x = root(2) - 1

tan x = 0.4142

cot x = 1 / 0.4142 = 2.414

Hence the value of cot x is 2.414 upto three decimal places.

Asad Jawaid
Sep 12, 2016

D H
Aug 2, 2016

Easy question if you have absolutely read trigonometry.

Atomsky Jahid
Jun 10, 2016

s i n θ + c o s θ = 2 c o s θ sin \theta + cos \theta = \sqrt{2} cos \theta Dividing by s i n θ sin \theta we get, 1 + c o t θ = 2 c o t θ 1 + cot \theta = \sqrt{2} cot \theta Simplifying yields, c o t θ = 1 2 1 cot \theta = \frac{1}{\sqrt{2}-1}

Prakhar Dwivedi
Apr 14, 2016

Does this question require a solution? It's too easy. No offence

Bharath Sriraam
Feb 20, 2016

sinx + cosx = sqrt(2)cosx

sinx={sqrt(2)-1}cosx

cosx/sinx=1/{sqrt(2)-1}

cotx=sqrt(2) + 1

So, cotx=2.414

Owen Leong
Sep 25, 2015

Using r-formula, sinX + cosX = sqrt(2)sin(X + 45deg)

X + 45deg = 90deg - X

Thus one possible value of X is 67.5deg

Unfortunately, I got stuck here and had to use the calculator to find cot(67.5deg).

Bhaskar Sen
Jul 14, 2015

Esy.... sinx+cosx=2^1/2sin(90_x) =sinx+cosx=2^1/2cosx =sinx=(2^1/2-1)cosx =tanx=2^1/2-1 =cotx=2^1/2+1 =cotx=2.414 (approx)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...