Trigonometry! #137

Geometry Level 4

The number of roots of the equation sec 2 θ + csc 2 θ = 8 \sec^{2}\theta+\csc^{2}\theta=8 in the interval [ 0 , π ] [0,\pi] is?

This problem is part of the set Trigonometry .

4 2 1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Omkar Kulkarni
Feb 21, 2015

sec 2 θ + csc 2 θ = 8 1 cos 2 θ + 1 sin 2 θ = 8 sin 2 θ + cos 2 θ sin 2 θ cos 2 θ = 8 8 sin 2 θ cos 2 θ = 1 2 ( 2 sin θ cos θ ) 2 = 1 s i n 2 2 θ = 1 2 sin 2 θ = ± 1 2 \sec^{2}\theta+\csc^{2}\theta=8 \\ \dfrac{1}{\cos^{2}\theta}+\dfrac{1}{\sin^{2}\theta}=8 \\ \dfrac{\sin^{2}\theta+\cos^{2}\theta}{\sin^{2}\theta\cos^{2}\theta}=8 \\ 8\sin^{2}\theta\cos^{2}\theta=1 \\ 2(2\sin\theta\cos\theta)^{2}=1 \\ sin^{2}2\theta=\dfrac{1}{2} \\ \sin2\theta=\pm\dfrac{1}{\sqrt{2}}

For sin 2 θ = 1 2 \sin2\theta=\dfrac{1}{\sqrt{2}} ,

2 θ = ( 1 ) n π 4 + n π θ = ( 1 ) n π 8 + n π 2 2\theta=(-1)^{n}\dfrac{\pi}{4}+n\pi \\ \theta=(-1)^{n}\dfrac{\pi}{8}+\dfrac{n\pi}{2}

which gives three roots.

For sin 2 θ = 1 2 \sin2\theta=-\dfrac{1}{\sqrt{2}}

2 θ = ( 1 ) n ( π 4 ) + n π θ = ( 1 ) n + 1 π 8 + n π 2 2\theta=(-1)^{n}\left(-\dfrac{\pi}{4}\right)+n\pi \\ \theta=(-1)^{n+1}\dfrac{\pi}{8}+\dfrac{n\pi}{2}

which gives one root.

Hence we have f o u r \boxed{four} roots.

sec 2 θ + csc 2 θ = 8 1 cos 2 θ + 1 sin 2 θ = 8 sin 2 θ + cos 2 θ sin 2 θ cos 2 θ = 8 s i n 2 2 θ = 1 2 sin 2 θ = ± 1 2 θ in the interval [0,π], 2 θ in the interval [0,2π], 2 θ = π 4 , 3 π 4 f o r + 1 2 a n d 5 π 4 , 7 π 4 f o r 1 2 . θ = π 8 , 3 π 8 a n d 5 π 8 , 7 π 8 F O U R r o o t s \sec^{2}\theta+\csc^{2}\theta=8 \\ \dfrac{1}{\cos^{2}\theta}+\dfrac{1}{\sin^{2}\theta}=8 \\ \dfrac{\sin^{2}\theta+\cos^{2}\theta}{\sin^{2}\theta\cos^{2}\theta}=8\\ \\ sin^{2}2\theta=\dfrac{1}{2} \\ \sin2\theta=\pm\dfrac{1}{\sqrt{2}} \\\theta ~\text{in the interval [0,π],} ~~\therefore~2\theta~\text{in the interval [0,2π], } \\\implies~2\theta= \dfrac \pi 4 , ~~ \dfrac{3 \pi} 4 ~~~for~+\dfrac 1 2~~~~ and~~~ \dfrac{5 \pi} 4~, ~\dfrac{7 \pi} 4 ~~for~~-\dfrac 1 2. \\ \implies~\theta= \dfrac \pi 8 , ~~ \dfrac{3 \pi} 8~~~ and ~~~\dfrac{5 \pi} 8, ~~\dfrac{7 \pi} 8\\\color{#D61F06}{FOUR~~ roots}

Niranjan Khanderia - 5 years, 12 months ago

Log in to reply

Two things: 1. Instead of 'in the interval', you could use '\in', i.e., ' \in '. 2. Why are your fractions bigger than mine? :/

Omkar Kulkarni - 5 years, 11 months ago

Log in to reply

Thank you for \in. You use \frac I use \ d \color{#D61F06}{d} frac. More over, when there is a single letter, { } are not required. e.g. 2^{9} can be 2^9, or \dfrac{17}{9} can be \dfrac(17} 9 etc.

Niranjan Khanderia - 5 years, 11 months ago

Log in to reply

@Niranjan Khanderia Oh okay. You mean \dfrac{17}9, right?

Omkar Kulkarni - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...