Trigonometry

Geometry Level 3

{ a sin 3 x + b cos 3 x = sin x cos x a sin x = b cos x \large \begin{cases} a\sin^3 x +b\cos^3 x =\sin x \cos x \\ a \sin x= b\cos x \end{cases}

a a and b b are non-zero constants such that for some x x , the above equation is satisfied. Find a 2 + b 2 a^2+b^2 .


The answer is 1.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Tiwari
Jun 19, 2016

{ a sin 3 x + b cos 3 x = sin x cos x a sin x = b cos x \large \begin{cases} a\sin^3 x +b\cos^3 x =\sin x \cos x \\ a \sin x= b\cos x \end{cases}

We can write the first equation as :

a sin x s i n 2 x + b cos 3 x = sin x cos x a\sin x \cdot sin^{2} x \ +\ b\cos^{3} x = \sin x \cos x

\Rightarrow b cos x sin 2 x + b cos 3 x = sin x cos x b\cos x \cdot \sin^2 x + b\cos^3 x = \sin x \cos x

\Rightarrow b cos x ( sin 2 x + cos 2 x ) = sin x cos x b\cos x (\sin^2 x + \cos^2 x) = \sin x \cos x

\Rightarrow b = sin x b = \sin x

Putting this value of b b in second equation gives us :

a = cos x a = \cos x

Hence ,

a 2 + b 2 = sin 2 x + cos 2 x = 1 a^2 \ + \ b^2 \ = \color{#20A900}{\sin^2 x + \cos^2 x} = \color{#69047E}{\boxed{1}}

Exactly same solution

Prince Loomba - 4 years, 11 months ago

Log in to reply

Great ! :)

Rishabh Tiwari - 4 years, 11 months ago

@Akshat Sharda From where did you find this question?

Swapnil Das - 4 years, 9 months ago

Log in to reply

It came in our coaching exam.

Akshat Sharda - 4 years, 9 months ago

Log in to reply

Oh, it was given in our mathematics class work, and our teacher claimed that no one could solve it :P

Swapnil Das - 4 years, 9 months ago

Log in to reply

@Swapnil Das and its so easy haha

Prince Loomba - 4 years, 9 months ago
Margaret Yu
Jun 19, 2016

{ a sin 3 x + b cos 3 x = sin x cos x a sin x = b cos x \large \begin{cases} a\sin^3 x +b\cos^3 x =\sin x \cos x \\ a \sin x= b\cos x \end{cases}

b cos x × a sin 2 x + b cos x × b cos 2 x = sin x cos x b\cos x \times a\sin^2 x +b\cos x \times b\cos^2 x =\sin x \cos x

b cos x × ( a sin 2 x + b cos 2 x ) = sin x cos x b\cos x \times (a\sin^2 x + b\cos^2 x) =\sin x \cos x \\

b cos x = sin x cos x b\cos x =\sin x \cos x

b = sin x \boxed{b =\sin x}

a sin x × a sin 2 x + b cos x × b cos 2 x = sin x cos x a\sin x \times a\sin^2 x +b\cos x \times b\cos^2 x =\sin x \cos x

a sin x x × a sin 2 x + a sin x × b cos 2 x = sin x cos x a\sin x x \times a\sin^2 x +a\sin x \times b\cos^2 x =\sin x \cos x

a sin x × ( a sin 2 x + b cos 2 x ) = sin x cos x a\sin x \times (a\sin^2 x + b\cos^2 x) =\sin x \cos x \\

a sin x = sin x cos x a\sin x =\sin x \cos x

a = cos x \boxed{a =\cos x}

a 2 + b 2 = 1 a^{2}+b^{2}= \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...