Trigonometry (2)

Geometry Level 4

S n = cos 2 π n + cos 2 2 π n + cos 2 3 π n + + cos 2 ( n 1 ) π n \large S_n= \cos^2 \dfrac{π}{n} + \cos^2 \dfrac{2π}{n} + \cos^2 \dfrac{3π}{n} + \cdots + \cos^2 \dfrac{(n-1)π}{n}

For integer n 2 n\geq 2 , simplify S n S_n to an algebraic function of n n .

n 2 \frac n2 n 1 2 \frac {n-1}2 n ( n + 1 ) 2 \frac {n(n+1)}2 n 2 2 \frac {n-2}2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Akshay Yadav
Apr 22, 2017

We can write,

S = p = 1 n 1 cos 2 ( p π / n ) = 1 2 p = 1 n 1 [ cos ( 2 p π / n ) + 1 ] S= \displaystyle\sum_{p=1}^{n-1} \cos^2 (p\pi/n) =\frac{1}{2}\displaystyle\sum_{p=1}^{n-1} [\cos (2p\pi/n)+1]

= 1 2 [ cos ( 2 π n × 1 + n 1 2 ) . sin ( ( n 1 ) π n ) sin ( π n ) + n 1 ] =\frac{1}{2} \left[\frac{\cos \left(\frac{2\pi}{n} \times \frac{1+n-1}{2} \right). \sin \left(\frac{(n-1)\pi}{n} \right)}{\sin \left(\frac{\pi}{n} \right)} +n-1 \right]

= 1 2 [ s i n ( π π n ) sin ( π / n ) + n 1 ] = n 2 2 =\frac{1}{2} \left[\frac{-sin \left(\pi-\frac{\pi}{n} \right)}{\sin (\pi/n)} +n-1 \right]=\boxed{\frac{n-2}{2}}

It is ( n-2)/2 not (n-1)/2.

rajdeep brahma - 4 years, 1 month ago

Log in to reply

Thanks I have edited it.

Akshay Yadav - 4 years, 1 month ago
Chew-Seong Cheong
Apr 17, 2017

S = cos 2 π n + cos 2 2 π n + cos 2 3 π n + + cos 2 ( n 1 ) π n = k = 1 n 1 cos 2 k π n = k = 1 n 1 1 2 ( 1 + cos 2 k π n ) = 1 2 k = 1 n 1 1 + 1 2 k = 1 n 1 cos 2 k π n = n 1 2 + 1 2 k = 1 n 1 ( e 2 k π n i ) ( z ) is the real part of z . = n 1 2 + 1 2 k = 1 n 1 e 2 k π n i = n 1 2 + 1 2 ( e 2 π n i e 2 ( n 1 ) π n i 1 e 2 π n i 1 ) = n 1 2 + 1 2 ( 1 e 2 π n i e 2 π n i 1 ) = n 1 2 + 1 2 ( 1 ) = n 1 2 1 2 = n 2 2 \begin{aligned} S & = \cos^2 \frac \pi n + \cos^2 \frac {2\pi}n + \cos^2 \frac {3\pi}n + \cdots + \cos^2 \frac {(n-1)\pi}n \\ & = \sum_{k=1}^{n-1} \cos^2 \frac {k \pi}n \\ & = \sum_{k=1}^{n-1} \frac 12 \left(1+\cos \frac {2k \pi}n \right) \\ & = \frac 12 \sum_{k=1}^{n-1} 1 + \frac 12 \sum_{k=1}^{n-1} \cos \frac {2k \pi}n \\ & = \frac {n-1}2 + \frac 12 \sum_{k=1}^{n-1} \Re \left(e^{\frac {2k \pi}ni} \right) & \small \color{#3D99F6} \Re(z) \text{ is the real part of }z. \\ & = \frac {n-1}2 + \frac 12 \cdot \Re \sum_{k=1}^{n-1} e^{\frac {2k \pi}ni} \\ & = \frac {n-1}2 + \frac 12 \cdot \Re \left(e^{\frac {2\pi}ni} \cdot \frac {e^{\frac {2(n-1)\pi}ni}-1}{e^{\frac {2\pi}ni}-1} \right) \\ & = \frac {n-1}2 + \frac 12 \cdot \Re \left(\frac {1-e^{\frac {2\pi}ni}}{e^{\frac {2\pi}ni}-1} \right) \\ & = \frac {n-1}2 + \frac 12 \cdot \Re \left(-1\right) \\ & = \frac {n-1}2 - \frac 12 \\ & = \boxed{\dfrac {n-2}2} \end{aligned}

Thanks a lot, sir. But I must say, they are really very fancy notations for a relatively simple concept.

Anmol Shetty - 4 years ago

Log in to reply

It is a standard. How else can you do it?

Chew-Seong Cheong - 4 years ago

yeah I agree

rajdeep brahma - 4 years ago

it is too much fancy.

rajdeep brahma - 4 years ago

Sir, is there any specialty in the symbol you used.

Anmol Shetty - 4 years, 1 month ago

Log in to reply

What do you mean? You mean \Re ?

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

Yes, Sir, I would like to know.

Anmol Shetty - 4 years, 1 month ago

Log in to reply

@Anmol Shetty For a complex number z = x + y i z = x+yi , where x x and y y are real and i = 1 i = \sqrt{-1} denotes the imaginary unit , real part ( z ) = x \Re(z) = x and imaginary part ( z ) = y \Im (z) = y . You should refer to the link here .

Chew-Seong Cheong - 4 years, 1 month ago

Put n=2 ( Classic JEE technique :P)

Oh man. You're very very clever! :P

Tapas Mazumdar - 4 years, 1 month ago

Log in to reply

Ya....people get used to such stuff during JEE preparations.

A Former Brilliant Member - 4 years, 1 month ago

I put n=2,3,4 to check is it right, quick strategy :D

Isaac YIU Math Studio - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...