Trigonometry (3)

Geometry Level 3

Triangle A B C ABC is such that tan A 2 \tan \dfrac{A}{2} , tan B 2 \tan \dfrac{B}{2} , tan C 2 \tan \dfrac{C}{2} are in harmonic progression , then find the minimum value of cot B 2 \cot \dfrac{B}{2} to 3 decimal places.


The answer is 1.732.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 19, 2017

When tan A 2 \tan \dfrac A2 , tan B 2 \tan \dfrac B2 and tan C 2 \tan \dfrac C2 are in harmonic progression, then

1 tan A 2 + 1 tan C 2 = 2 tan B 2 Note that for A B C : B 2 = π 2 ( A 2 + C 2 ) = 2 tan ( π 2 ( A 2 + C 2 ) ) = 2 cot ( A 2 + C 2 ) 1 tan A 2 + 1 tan C 2 = 2 tan ( A 2 + C 2 ) tan A 2 + tan C 2 tan A 2 tan C 2 = 2 ( tan A 2 + tan C 2 ) 1 tan A 2 tan C 2 1 tan A 2 tan C 2 = 2 tan A 2 tan C 2 tan A 2 tan C 2 = 1 3 \begin{aligned} \frac 1{\tan \frac A2} + \frac 1{\tan \frac C2} & = \frac 2{\tan \color{#3D99F6} \frac B2} & \small \color{#3D99F6} \text{Note that for }\triangle ABC: \ \frac B2 = \frac \pi 2 - \left(\frac A2 + \frac C2\right) \\ & = \frac 2{\tan \color{#3D99F6}\left(\frac \pi 2 - \left(\frac A2 + \frac C2\right)\right)} \\ & = \frac 2{\cot \left(\frac A2 + \frac C2\right)} \\ \implies \frac 1{\tan \frac A2} + \frac 1{\tan \frac C2} & = 2 \tan \left(\frac A2 + \frac C2\right) \\ \frac {\tan \frac A2 + \tan \frac C2}{\tan \frac A2 \tan \frac C2 } & = \frac {2\left(\tan \frac A2 + \tan \frac C2 \right)}{1-\tan \frac A2 \tan \frac C2} \\ 1-\tan \frac A2 \tan \frac C2 & = 2 \tan \frac A2 \tan \frac C2 \\ \implies \tan \frac A2 \tan \frac C2 & = \frac 13 \end{aligned}

Using AM-GM inequality, we have:

1 tan A 2 + 1 tan C 2 2 tan A 2 tan C 2 = 2 3 2 tan B 2 2 3 cot B 2 3 1.732 \begin{aligned} \frac 1{\tan \frac A2} + \frac 1{\tan \frac C2} \ge \frac 2{\sqrt{\tan \frac A2 \tan \frac C2}} = 2\sqrt 3 \\ \frac 2{\tan \frac B2} \ge 2\sqrt 3 \\ \implies \cot \frac B2 \ge \sqrt 3 \approx \boxed{1.732} \end{aligned}

Thank you sir for such a nice solution (+1). :)

Rahil Sehgal - 4 years, 1 month ago

Log in to reply

But the problem may be wrong. Because tan A 2 = tan B 2 = tan C 2 = 1 3 \tan \frac A2 = \tan \frac B2 = \tan \frac C2 = \frac 1{\sqrt 3}

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

Sir , that means that all the angles are equal to 60 degrees than what is the issue?

Ankit Kumar Jain - 4 years, 1 month ago

Log in to reply

@Ankit Kumar Jain Are they in harmonic progression then? The common difference is 0.

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

@Chew-Seong Cheong But sir , we can still consider it to be an HP though the common difference is 0. Because it satisfies the conditions of being an HP..Point out the mistakes if I am wrong. Thanks

Ankit Kumar Jain - 4 years, 1 month ago

Log in to reply

@Ankit Kumar Jain I suppose so. I was trying to get one with difference not equal to zero but couldn't.

Chew-Seong Cheong - 4 years, 1 month ago
Md Zuhair
Apr 18, 2017

Solution

\implies 2 tan B 2 = 1 tan A 2 + 1 tan C 2 \dfrac{2}{\tan \dfrac{B}{2}} = \dfrac{1}{\tan \dfrac{A}{2}} + \dfrac{1}{\tan \dfrac{C}{2}}

\implies 2 tan 180 A C 2 = 1 tan A 2 + 1 tan C 2 \dfrac{2}{\tan \dfrac{180-A-C}{2}} = \dfrac{1}{\tan \dfrac{A}{2}} + \dfrac{1}{\tan \dfrac{C}{2}}

\implies 2 tan ( 90 A + C 2 ) = 1 tan A 2 + 1 tan C 2 \dfrac{2}{\tan (90 -\dfrac{A+C}{2})} = \dfrac{1}{\tan \dfrac{A}{2}} + \dfrac{1}{\tan \dfrac{C}{2}}

\implies 2 tan A + C 2 = 1 tan A 2 + 1 tan C 2 2 \tan \dfrac{A+C}{2} = \dfrac{1}{\tan \dfrac{A}{2}} + \dfrac{1}{\tan \dfrac{C}{2}}

\implies 2 tan A + C 2 = tan A 2 + tan C 2 tan A 2 × tan C 2 2 \tan \dfrac{A+C}{2} = \dfrac{\tan \dfrac{A}{2} + \tan \dfrac{C}{2}}{\tan\dfrac{A}{2} \times \tan\dfrac{C}{2}}

\implies 2 tan A 2 + tan C 2 1 tan A 2 × tan C 2 = tan A 2 + tan C 2 tan A 2 × tan C 2 2 \dfrac{ \tan\dfrac{A}{2} + \tan \dfrac{C}{2}}{1- \tan \dfrac{A}{2} \times \tan \dfrac{C}{2}} = \dfrac{\tan \dfrac{A}{2} + \tan \dfrac{C}{2}}{\tan\dfrac{A}{2} \times \tan\dfrac{C}{2}}

\implies 2 1 tan A 2 × tan C 2 = 1 tan A 2 × tan C 2 \dfrac{2}{1- \tan \dfrac{A}{2} \times \tan \dfrac{C}{2}} = \dfrac{1}{\tan\dfrac{A}{2} \times \tan\dfrac{C}{2}}

Crossmultiplying and simplyfying we get we get

\implies tan A 2 × tan C 2 = 1 3 \tan \dfrac{A}{2} \times \tan\dfrac{C}{2} = \dfrac{1}{3}

\implies A 2 = C 2 = 30 \dfrac{A}{2} = \dfrac{C}{2} = 30

A = B = C = 60 \implies \boxed{A=B=C=60}

cot B 2 = cot 30 = 3 = 1.732 \implies \cot\dfrac{B}{2} = \cot 30 = \boxed{\sqrt{3} = 1.732}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...