TrigoNOPEmetry

Geometry Level 4

Ω n ( x ) = i = 0 n cos [ ( 2 i + 1 ) x ] i = 0 n sin [ ( 2 i + 1 ) x ] \displaystyle \Omega_{n}(x) =\frac{\displaystyle \sum_{i=0}^n \cos \bigg[(2i+1)x \bigg]}{\displaystyle \sum_{i=0}^n \sin \bigg [ ({2i+1})x \bigg]}

Consider the function above, if Ω 200 ( π 8 ) \displaystyle \Omega_{200}\left(\frac{\pi}{8}\right) can be expressed in the form a + b c \sqrt{a+b\sqrt{c}} , where a , b , c a,b,c are positive integers, with b b square-free.

What is the value of a + b + c a+b+c ?

This is my 200-follower problem. It has been a very, very interesting journey so far. Thank you Brilliant!


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 27, 2015

Let C n ( x ) = i = 0 n cos ( ( 2 i + 1 ) x ) \space C_n (x) = \displaystyle \sum _{i=0} ^n {\cos{((2i+1)x)}} \space and S n ( x ) = i = 0 n sin ( ( 2 i + 1 ) x ) \space S_n (x) = \displaystyle \sum _{i=0} ^n {\sin{((2i+1)x)}}

We note that:

C 3 ( π 8 ) = cos π 8 + cos 3 π 8 + cos 5 π 8 + cos 9 π 8 = cos π 8 + cos 3 π 8 cos 3 π 8 cos π 8 = 0 \begin{aligned} C_3 \left( \frac{\pi}{8} \right) & = \cos{\frac{\pi}{8}} + \cos{\frac{3\pi}{8}} + \cos{\frac{5\pi}{8}} + \cos{\frac{9\pi}{8}} \\ & = \cos{\frac{\pi}{8}} + \cos{\frac{3\pi}{8}} - \cos{\frac{3\pi}{8}} - \cos{\frac{\pi}{8}} \\ & = 0 \end{aligned}

C n ( π 8 ) = 0 \Rightarrow C_n \left( \frac{\pi}{8} \right) = 0\space for n = 3 , 7 , 11 , . . . 4 k + 1 , . . . \space n = 3, 7, 11, ... 4k+1, ... where k = 0 , 1 , 2... k = 0,1,2...

C n ( π 8 ) = C n mod 4 ( π 8 ) C 200 ( π 8 ) = C 0 ( π 8 ) = cos π 8 \Rightarrow C_n \left( \frac{\pi}{8} \right) = C_{n \text{ mod } 4} \left( \frac{\pi}{8} \right) \quad \Rightarrow C_{200} \left( \frac{\pi}{8} \right) = C_0 \left( \frac{\pi}{8} \right) = \cos{\frac{\pi}{8}}

Similarly, S n ( π 8 ) = S n mod 8 ( π 8 ) S 200 ( π 8 ) = S 0 ( π 8 ) = sin π 8 S_n \left( \frac{\pi}{8} \right) = S_{n \text{ mod } 8} \left( \frac{\pi}{8} \right) \quad \Rightarrow S_{200} \left( \frac{\pi}{8} \right) = S_0 \left( \frac{\pi}{8} \right) = \sin{\frac{\pi}{8}}

Therefore,

Ω 200 ( π 8 ) = C 200 ( π 8 ) S 200 ( π 8 ) = cos π 8 sin π 8 = 2 cos 2 π 8 sin π 8 cos π 8 = cos π 4 + 1 sin π 4 = 1 2 + 1 1 2 = 1 + 2 \Omega_{200} \left( \frac{\pi}{8} \right) = \dfrac {C_{200} \left( \frac{\pi}{8} \right)} {S_{200} \left( \frac{\pi}{8} \right)} = \dfrac {\cos{\frac{\pi}{8}}}{\sin{\frac{\pi}{8}}} = \dfrac {2\cos^2 {\frac{\pi}{8}}}{\sin{\frac{\pi}{8}} \cos{\frac{\pi}{8}}} = \dfrac {\cos{\frac{\pi}{4}}+1}{\sin{\frac{\pi}{4}}} \\ \quad \quad \quad \quad = \dfrac {\frac{1}{\sqrt{2}}+1}{\frac{1}{\sqrt{2}}} = 1 + \sqrt{2}

a + b c = 1 + 2 a + b c = ( 1 + 2 ) 2 = 1 + 2 2 + 2 = 3 + 2 3 a + b + c = 3 + 2 + 2 = 7 \Rightarrow \begin{aligned} \sqrt{a+b\sqrt{c}} & = 1 + \sqrt{2} \\ a + b\sqrt{c} & = (1+\sqrt{2})^2 \\ & = 1+2\sqrt{2}+2 \\ & = 3 + 2\sqrt{3} \end{aligned} \quad \Rightarrow a +b+c = 3+2+2 = \boxed{7}

Thank you for the awesome solution!!

B.S.Bharath Sai Guhan - 6 years, 2 months ago

Log in to reply

Thanks. The problem's points appear to be too low. Others may not be motivated to try it.

Chew-Seong Cheong - 6 years, 2 months ago

Log in to reply

In your opinion, what rating do you think this problem should have?

B.S.Bharath Sai Guhan - 6 years, 2 months ago

Log in to reply

@B.S.Bharath Sai Guhan I think it should be high end of level 3.

Chew-Seong Cheong - 6 years, 2 months ago

Log in to reply

@Chew-Seong Cheong Congratulations sir , on your getting 500 followers :)

A Former Brilliant Member - 6 years, 2 months ago

Log in to reply

@A Former Brilliant Member Yes. Thanks.

Chew-Seong Cheong - 6 years, 2 months ago
Abhishek Sharma
Mar 27, 2015

Ω n ( x ) = i = 0 n cos { ( 2 i + 1 ) x } i = 0 n sin { ( 2 i + 1 ) x } { \Omega }_{ n }(x)=\frac { \sum _{ i=0 }^{ n }{ \cos { \{ (2i+1)x\} } } }{ \sum _{ i=0 }^{ n }{ \sin { \{ (2i+1)x\} } } }

Multiplying and dividing with 2 sin x 2\sin { x } ,

Ω n ( x ) = i = 0 n 2 sin x cos { ( 2 i + 1 ) x } i = 0 n 2 sin x sin { ( 2 i + 1 ) x } { \Omega }_{ n }(x)=\frac { \sum _{ i=0 }^{ n }{ 2\sin { x } \cos { \{ (2i+1)x\} } } }{ \sum _{ i=0 }^{ n }{ 2\sin { x } \sin { \{ (2i+1)x\} } } }

Applying required identities,

Ω n ( x ) = i = 0 n sin { ( 2 i + 2 ) x } sin 2 i x i = 0 n cos 2 i x cos { ( 2 i + 2 ) x } { \Omega }_{ n }(x)=\frac { \sum _{ i=0 }^{ n }{ \sin { \{ (2i+2)x\} -\sin { 2ix } } } }{ \sum _{ i=0 }^{ n }{ \cos { 2ix } -\cos { \{ (2i+2)x\} } } }

These are telescoping series. All middle terms will cancel out to yield,

Ω n ( x ) = sin { ( 2 n + 2 ) x } 1 cos { ( 2 n + 2 ) x } { \Omega }_{ n }(x)=\frac { \sin { \{ (2n+2)x\} } }{ 1-\cos { \{ (2n+2)x\} } }

Applying double angle formulas,

Ω n ( x ) = 2 sin { ( n + 1 ) x } cos { ( n + 1 ) x } 2 sin 2 { ( n + 1 ) x } { \Omega }_{ n }(x)=\frac { 2\sin { \{ (n+1)x\} } \cos { \{ (n+1)x\} } }{ 2\sin ^{ 2 }{ \{ (n+1)x\} } }

We have simplified the tedious expression and got this result.

Ω n ( x ) = cot { ( n + 1 ) x } { \Omega }_{ n }(x)=\cot { \{ (n+1)x\} }

We now put values n = 200 n=200 and x = π 8 x=\frac { \pi }{ 8 }

Ω 200 ( π 8 ) = cot 201 π 8 { \Omega }_{ 200 }(\frac { \pi }{ 8 } )=\cot { \frac { 201\pi }{ 8 } }

Simplifying Angle,

Ω 200 ( π 8 ) = cot 25 π + π 8 { \Omega }_{ 200 }(\frac { \pi }{ 8 } )=\cot { 25\pi +\frac { \pi }{ 8 } }

Further simplifying,

Ω 200 ( π 8 ) = cot π 8 { \Omega }_{ 200 }(\frac { \pi }{ 8 } )=\cot { \frac { \pi }{ 8 } }

Putting cot π 8 = 2 + 1 \cot { \frac { \pi }{ 8 } }=\sqrt { 2 } +1 ,

Ω 200 ( π 8 ) = 2 + 1 { \Omega }_{ 200 }(\frac { \pi }{ 8 } )=\sqrt { 2 } +1

Manipulating the above expression to get answer,

Ω 200 ( π 8 ) = ( 2 + 1 ) 2 { \Omega }_{ 200 }(\frac { \pi }{ 8 } )=\sqrt { { (\sqrt { 2 } +1) }^{ 2 } }

Simplifying,

Ω 200 ( π 8 ) = 3 + 2 2 { \Omega }_{ 200 }(\frac { \pi }{ 8 } )=\sqrt { 3+2\sqrt { 2 } }

Therefore the answer is 7 \boxed { 7 } .

Nice! You got the identity that I based this question off of. Thank you for the solution :)

B.S.Bharath Sai Guhan - 6 years, 2 months ago

Can someone please format it better?

Also how to add blank line in latex? And how to make the text big?

Abhishek Sharma - 6 years, 2 months ago

Log in to reply

Nice solution ! Btw I used complex numbers , using euelr's !

And You can use

\ (\displaystyle{Type your latex here}) Don't give spaces b/w \ and ()

Nishu sharma - 6 years, 1 month ago

Log in to reply

Nice to see you back.

Abhishek Sharma - 6 years, 1 month ago

Notice that S = Ω 200 ( π 8 ) \displaystyle S = \Omega_{200}\left(\frac{\pi}{8}\right) is, after expansion:

c o s ( x ) + c o s ( 3 x ) + . . . + c o s ( 201 x ) + . . . + c o s ( 399 x ) + c o s ( 401 x ) s i n ( x ) + s i n ( 3 x ) + . . . + s i n ( 201 x ) + . . . + s i n ( 399 x ) + s i n ( 401 x ) \displaystyle \frac{cos(x) + cos(3x) + ... + cos(201x) + ... + cos(399x) + cos(401x)}{sin(x) + sin(3x) + ... + sin(201x) + ... + sin(399x) + sin(401x)}

Grouping in Gaussian fashion, we get:

c o s ( x ) + c o s ( 401 x ) + c o s ( 3 x ) + c o s ( 399 x ) + . . . + c o s ( 201 x ) s i n ( x ) + s i n ( 401 x ) + s i n ( 3 x ) + s i n ( 399 x ) + . . . + s i n ( 201 x ) \displaystyle \frac { cos(x)+cos(401x)+cos(3x)+cos(399x)+...+cos(201x) }{ sin(x)+sin(401x)+sin(3x)+sin(399x)+...+sin(201x) }

Using the Sum-to-Product formulae, we get :

2 c o s ( 201 x ) c o s ( 200 x ) + 2 c o s ( 201 x ) c o s ( 198 x ) + . . . + c o s ( 201 x ) 2 s i n ( 201 x ) c o s ( 200 x ) + 2 s i n ( 201 x ) c o s ( 198 x ) + . . . + s i n ( 201 x ) \displaystyle \Rightarrow \quad \frac { 2cos(201x)cos(200x)+2cos(201x)cos(198x)+...+cos(201x) }{ 2sin(201x)cos(200x)+2sin(201x)cos(198x)+...+sin(201x) }

Which conveniently reduces to :

c o s ( 201 x ) ( i = 0 100 c o s ( ( 200 2 i ) x ) ) s i n ( 201 x ) ( i = 0 100 c o s ( ( 200 2 i ) x ) ) \displaystyle \Rightarrow \quad \frac { cos(201x)(\displaystyle \sum _{ i=0 }^{ 100 }{ cos((200-2i)x) } ) }{ sin(201x)(\displaystyle\sum _{ i=0 }^{ 100 }{ cos((200-2i)x) } ) } \quad

Therefore, S = Ω 200 ( π 8 ) = c o t ( 201 π 8 ) \displaystyle S = \Omega_{200}\left(\frac{\pi}{8}\right) = cot\left(\frac{201\pi}{8}\right)

Now, c o t ( 201 π 8 ) = c o t ( 24 π + 9 π 8 ) = c o t ( 9 π 8 ) = c o t ( π 8 ) cot\left(\frac{201\pi}{8}\right) = cot\left(24\pi + \frac{9\pi}{8}\right) = cot\left(\frac{9\pi}{8}\right) = cot\left(\frac{\pi}{8}\right)

Also, using the Double-Angle formula for cotangents and using y = c o t ( π 8 ) y= cot\left(\frac{\pi}{8}\right) :

c o t ( 2 π 8 ) = y 2 1 2 y = 1 \displaystyle cot\left(2*\frac{\pi}{8}\right) = \frac{y^2 - 1}{2y} = 1

Solving which gives y = c o t ( π 8 ) = S = 1 + 2 y= cot\left(\frac{\pi}{8}\right) = S = 1 + \sqrt{2}

I'm a little bit cross at the problem-setter for making the problem so twisted, but assume :

a + b c = 1 + 2 a + b c = ( 1 + 2 ) 2 = 3 + 2 2 \displaystyle \sqrt{a+b\sqrt{c}} = 1 + \sqrt{2} \Rightarrow a + b\sqrt{c} = (1+\sqrt{2})^2 = 3+2\sqrt{2}

Hence (finally!)

a + b + c = 3 + 2 + 2 = 7 \displaystyle a + b + c = 3 + 2 + 2 = \boxed{7}

A really good problem. I'll set it at level -4

Krishna Ar - 6 years, 2 months ago

Log in to reply

Coming from experienced problem setters like yourself, it means a lot to me. Thank you very much, Krishna!

B.S.Bharath Sai Guhan - 6 years, 2 months ago

Log in to reply

Congratulations @B.S.Bharath Sai Guhan :)

A Former Brilliant Member - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...