Try Solving this (3)

Calculus Level 4

0 π d x 7 + 5 cos x = ? \large \displaystyle \int_0^{\pi} \frac{dx}{7+5 \cos x} = \, ?

  • Answer till 3 decimal places.

  • For final answer use approximation π = 22 7 . \large \pi = \dfrac{22}{7}.


The answer is 0.64153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 π d x 7 + 5 cos x I = 0 π d x 7 + 5 cos ( π x ) I = 0 π d x 7 5 cos x \large \displaystyle I = \int_0^{\pi} \frac{dx}{7+5 \cos x}\\ \large \displaystyle I = \int_0^{\pi} \frac{dx}{7 + 5 \cos (\pi - x)}\\ \large \displaystyle I = \int_0^{\pi} \frac{dx}{7 - 5 \cos x}

By Adding, We get

2 I = 0 π 14 49 25 cos 2 x . d x = 2 × 14 0 π / 2 d x 49 25 cos 2 x = 28 0 π / 2 sec 2 x . d x 49 ( 1 + tan 2 x ) 25 = 28 0 π / 2 sec 2 x . d x 24 + 49 tan 2 x = 28 49 0 π / 2 sec 2 x 24 49 + tan 2 x . d x = 28 49 × [ 1 24 49 tan 1 7 tan x 24 ] 0 π / 2 = 2 6 ( π 2 0 ) = π 6 = 22 7 × 6 \begin{aligned} \large \displaystyle 2I = \int_0^{\pi} \frac{14}{49 - 25 \cos ^2x} .dx = 2 \times 14 \int_0^{\pi/2} \frac{dx}{49-25 \cos ^2x}\\ \large \displaystyle = 28 \int_0^{\pi/2} \frac{\sec ^2x . dx}{49(1+\tan ^2x) - 25}\\ \large \displaystyle = 28 \int_0^{\pi/2} \frac{\sec ^2x . dx}{24 + 49 \tan ^2x}\\ \large \displaystyle = \frac{28}{49} \int_0^{\pi/2} \frac{\sec ^2x}{\frac{24}{49} + \tan ^2x} .dx\\ \large \displaystyle = \frac{28}{49} \times \left[\frac{1}{\sqrt{\frac{24}{49}}} \tan ^{-1} \frac{7 \tan x}{\sqrt{24}} \right]_0^{\pi/2}\\ \large \displaystyle = \frac{2}{\sqrt{6}} \left (\frac{\pi}{2} - 0 \right) = \frac{\pi}{\sqrt{6}} = \frac{22}{7 \times \sqrt6} \end{aligned}

2 I = 22 7 × 6 I = 22 7 × 2 × 6 = 0.64153 \large \displaystyle 2I = \frac{22}{7 \times \sqrt6}\\ \large \displaystyle \implies I = \frac{22}{7 \times 2 \times \sqrt6} = \boxed{0.64153}

Nice! I went for substitution of c o s x = 1 t a n 2 ( x / 2 ) 1 + t a n 2 ( x / 2 ) cosx= \dfrac{1-tan^2(x/2)}{1+tan^2(x/2)} then substituted t a n x / 2 tanx/2 as t.

Rudraksh Shukla - 5 years, 2 months ago

Log in to reply

It will make the sum more complicated. ;)

Samara Simha Reddy - 5 years, 2 months ago

Log in to reply

No, that substitution is the best in this case . The integral gets converted to,
0 d t t 2 + 6 \displaystyle \int_{0}^{\infty}\dfrac{dt}{t^{2}+6}

A Former Brilliant Member - 5 years, 2 months ago

Log in to reply

@A Former Brilliant Member Then you post a solution using your steps.

Samara Simha Reddy - 5 years, 2 months ago

Log in to reply

@Samara Simha Reddy if Vighnesh or Rudraksh don't do it , I'll do it... The proof is already almost done

Guillermo Templado - 5 years, 2 months ago

I = 0 π d x 7 + 5 cos ( x ) I = \displaystyle \int_{0}^{\pi} \dfrac{dx}{7+5\cos(x)}
tan ( x 2 ) = t d x = 2 d t 1 + t 2 \tan\left(\dfrac{x}{2}\right) = t \rightarrow dx = \dfrac{2dt}{1+t^{2}}
I = 0 2 d t 1 + t 2 7 + 5 1 t 2 1 + t 2 = 0 d t t 2 + 6 = 1 2 6 [ arctan ( t 6 ) ] 0 = π 2 6 I = \displaystyle \int_{0}^{\infty} \dfrac{\frac{2dt}{1+t^{2}}}{7+5\frac{1-t^{2}}{1+t^{2}}} = \int_{0}^{\infty} \dfrac{dt}{t^{2}+6} = \dfrac{1}{2\sqrt{6}}\left[\arctan\left(\dfrac{t}{\sqrt{6}}\right)\right]_{0}^{\infty} = \dfrac{\pi}{2\sqrt{6}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...