Twice and thrice tetration

9 9 9 9 9 9 9 \large {9^{{}^9}}^{{}^9} \qquad {{9^{{}^9}}^{{}^9}}^{{}^9}

Are the last two digits of these numbers the same?

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Venkatachalam J
Jul 20, 2018

Relevant wiki: Finding the last few digits of a power

The last two digits of the powers of 9 repeats with the cycle length of 10.

How does this imply the digits in the tens place are the same?

Brian Moehring - 2 years, 10 months ago

Log in to reply

Thanks for the information. I updated the solution with required modifications.

Venkatachalam J - 2 years, 10 months ago

9^9 Out[1]: 387420489

(9^9)^9 Out[2]: 196627050475552913618075908526912116283103450944214766927315415537966391196809L

((9^9)^9)^9 Out[3]: 439328503696464329829774782657072712058010308177126710621676697750466344744764029773301412612482563729435064854354299095570379503452515853238520182740967398746503532324400000659505126023955913142968176998364877699089666171297275956245407453033190168644894850576346492691458695174281789557994923607783461486426448617667076393901104477324982631297641034277093818692823488603426279473674368943609268871793467206677285688478458498235002859256706389043030847945506577080623430066283504397583789044245429585982964571774605868466160379567432725704121260940939343217905975847365096315872153240969882363435363449775254393010368267343970426230801390250903399147001650831878665172798468587509747439118815689L

(((9^9)^9)^9)^9 Out[4]: 609683485452741112075235500724516670453115716895320025142055544060992206118345733195670930601391416031419347837381484188382881951433379123359313314933244210601512487020777732791222771893404859051590828696103799967120373592507057411946836370842145917500334762398351641542409564168524317143715760969367337242278252296192257755590138005663105597330353536830297965125372297102681424686850910639047766049279097023890339143848228023392943078063199836424226954041357578424782631862433423874215159238431543345109430718973560158757704908903172111956056366259712652853432607460910077283409427311989607857053110397329989034825569575562188685305447453330677591022902049353489382228107260629232409368999333685042946398487309186571606142468757152565434485212541721163897314567917523997823121395142317145049341594054811528070197536688303888476958771977502323653181348467752354680020863378480973818298508318268338696302019357148521532095273598636209307997253608343889856073384560577927572337867354822396908678510662371503925980869702639576971942702430789055678881944576812182580901378418898294860706790263994597430111831268711625556356745728755442130871232085685099470290641006222674784729223127188400448612887433108820629470380367355057572351376001828289026362967862424639273455806774138381983139391719563215770240694287203849677560831055766278286055921130338563008375210500966795010401951960267177086738862889331978106287759384737660872735552451751086042784918872934904760782042675129004924276356715421301922392188236481891996346794784316632052651079636553853158992053677395693092569827914929328904654596217077817628463493264816138623805861253498858607687798134962850649623019007141709446429416140168901951026952245323112428680444922280963531416429758022613714116143602824821189791450690561785985328865796850032627017572718356490100095105676235076142976078079397192618073886364752590488211991362605688529536772962022417040606636121435964110777395524949160680134182225915191726034865406003390625199182193704990935060676374990819823281721349606987499507449954162729524128628164389806486941191778116951061002959779309792915802011047015297567696262070807902590624341424651267523754995634828034132969009161722806818947979129519104094176659792899101273912529107352000213040998391280254936459774378680076331527294505187943205606116442740735027269981199798634681059824749208723590031392046892644888565623488228129233828270657491063132675457565165860856375112698580144903082943537288750935180048935928242409821465559574928773585712997132459879081492505228338041747218371864192537854458115384458443284811117109223158217922975271342526900454021410737004974056813740347900173639584819288397003446440395559967822443984946809649260538989890854424983749760215218502405535051899734436256808729304654943315380632199248966175218154536579536483392432757168748519548575914463080864612941543657975520976698508121839730376700637312871357040723739391173247004119377996460400136958194519944877775553905441128766167615205833101791439083812012979266215373806281902732533005665368905557306549177307201247839098755527254576243815293172818701056068187094337000830025044568191819338246332521176984917533143001303544936037217109408608296056961292104677778033512569311185669611058156875751920862714153337048248861344354574341358632587875957691369942874935898638113322640421405566881801965340015901941334817653304156100386242603374489197264858144897492256153754185247688137724095468876305401685269185649055671895403415607192750118946813187627716825769308937935281809880349065098912099942537186223480096589842500124598628855341293980918670736710752753161316977986970230893132883568092722417036577397419329711576046702965060147303177816991840555167389850793397172373291960986137884498969842721115448203731755432055446123713854720966435544053834531814962725787835476454058961787095965238820001762972262348644726507372696136062630889846947967042157274998728255423717506038369054453802699448067181700320583324203971673532509015002200198546220101578637871060271773723985735326312490897528624974678487604360480338646780392785676973708354370116343339372958090155236556264989945152110748284990609230744137588556473478169632324717488899232327650262587730415443828624213119263203235451460137506301422623063069888778412569821819038214360262079585844815271405169278081934512541484799168796365504402617926643709383546636558547065128407589965221536380360737164365161493586151373734502449275476098556849692098238927272648082451753057111398571676688567362269137195467250570594417851428872922702596328004678205243912526004349040271237573969332446648270076706518450787059045724992001802132113820388790929299888571160776522939260299171326471468686458863225497475144416893501180850829978771146935472015137175966533057924747021216126848140769146794309982329972559295289075792967956351607513991727110220921498308244980078479795482015372569623224939778650251487071756534749451100348226056933967588391354541511849177686493559219699542125182527593907861122968626554629883926773846771539543101525574189543625600541697540076702940379874888947144612158982466646309842628547319739077865331476463453992805226514211097711176423255674183845477168040599465258972388573208431575083860615979810029275638989851003295044555549243113839462378873502369543130242015660020602787973598572467060957381241565941205456698910482067836113482102280524406646302743470112087427472514013105288633611502785188213067980467300746437302992567150102075686265552843685417392129983164451911558907471068830798391649115996205050608599640736308585851400373853700540360971706698324794296838560001790320259128642537657946233749749278942121508917513079964037379047390153778173542741898479242726687382246938596706657693174111627846656799557424571601651943183512955281868385914251451010073404817059514241233091408860258393083571386081348796186188323378867994721747659028673328480484459679631662895194137215637219320119109291791279254127828570290501391758311749047110360962043813923111344884366144770117586736537392472191116611664818657084338613647063339077288169097994438000017977949919329083260526096133403745058519219706445278520075152513671209817461154580997332471621813987611514972532379635692724472346821600549802125671248433668213379459545260244454772731023174256697609L

Michael Fitzgerald - 2 years, 10 months ago

Log in to reply

You have found ( 9 9 ) 9 = 9 9 2 ( ( 9 9 ) 9 ) 9 = 9 9 3 ( ( ( 9 9 ) 9 ) 9 ) 9 = 9 9 4 (9^9)^9 = 9^{9^2}\\ ((9^9)^9)^9 = 9^{9^3} \\ (((9^9)^9)^9)^9 = 9^{9^4}

These are not what is written in the problem. To find these, you would need to find 9^(9^9) and 9^(9^(9^9))

I would strongly advise against your having your computer find these values exactly (they have about 369693100 369693100 and 1 0 369693100 log 9 10^{369693100}\log 9 digits, respectively), but depending on how your program implements modular arithmetic, it should be able to find the result modulo 100 of each.

Brian Moehring - 2 years, 10 months ago

Problem should read 9 9 9 9 9 9 \large {9^{{}^9}} \qquad {{9^{{}^9}}^{{}^9}}^{{}^9}

Michael Fitzgerald - 2 years, 10 months ago

Log in to reply

While that would work too, the problem as written works.

Brian Moehring - 2 years, 10 months ago

Log in to reply

Answer is wrong. If you use a calculator, it will show you that both have different digits. 9^81 = 09 and 9^729 = 89. This is alternating. First time I am seeing everyone posting the solution for wrong answer

Vikas Jangra - 2 years, 10 months ago

Log in to reply

@Vikas Jangra As a general rule, if everyone else seems to be wrong, you should check your assumptions. It's not impossible that all the posted solutions are incorrect, but it's quite unlikely for featured problems.

In this case, you have the order of operations reversed. A power tower must be evaluated from the highest power, moving down the tower.

Brian Moehring - 2 years, 10 months ago

Sir you are bj venkatchalam. Please teach me functional equation for inmo

Ram Sita - 2 years, 10 months ago

Log in to reply

Sorry for the delay response. Please check my profile. After your comment I found books written by the author Problem Primer for the Olympiad &Functional Equations. Thank you.

Venkatachalam J - 2 years, 10 months ago

Please provide any number theoretic or modular arithmetic based solution like foreigners . Why applying cycle or order Indian argument based answers.

Ram Sita - 2 years, 10 months ago

Answer is wrong. If you use a calculator, it will show you that both have different digits. 9^81 = 09 and 9^729 = 89. This is alternating. First time I am seeing everyone posting the solution for wrong answer

Vikas Jangra - 2 years, 10 months ago

Log in to reply

Order of hierarchy is 9^(9^9) and 9^(9^(9^9)). Right to Left.

Venkatachalam J - 2 years, 10 months ago

9^(9^9) is not equal to (9^9)^9, because 9^(9^9)=9^387420489, which you can't put in a normal calculator, and (9^9)^9=387420489^9. Hope you could understand the difference.

Gonçalo Freitas - 2 years, 10 months ago
Chew-Seong Cheong
Jul 11, 2018

Relevant wiki: Carmichael's Lambda Function

Let N = 9 9 9 9 N = 9^{9^{9^9}} . Since gcd ( 9 , 100 ) = 1 \gcd(9,100) = 1 , we can apply Euler's theorem and the related Carmichael lambda as follows.

N 9 9 9 9 m o d λ ( 100 ) (mod 100) Carmichael lambda λ ( 100 ) = 20 9 9 9 9 m o d λ ( 20 ) m o d 20 (mod 100) Again gcd ( 9 , 20 ) = 1 9 9 9 9 m o d 2 m o d 4 m o d 20 (mod 100) and gcd ( 9 , 4 ) = 1 9 9 9 1 m o d 4 m o d 20 (mod 100) \large \begin{aligned} N & \equiv 9^{9^{9^9}\bmod \color{#3D99F6} \lambda(100)} \text{ (mod 100)} & \small \color{#3D99F6} \text{Carmichael lambda }\lambda (100)=20 \\ & \equiv 9^{9^{9^9 \bmod \color{#D61F06} \lambda (20)}\bmod \color{#3D99F6} 20} \text{ (mod 100)} & \small \color{#D61F06} \text{Again }\gcd(9,20) = 1 \\ & \equiv 9^{9^{9^{9 \color{#3D99F6} \bmod 2} \bmod \color{#D61F06}4}\bmod 20} \text{ (mod 100)} & \small \color{#3D99F6} \text{and }\gcd(9,4) = 1 \\ & \equiv 9^{9^{9^{\color{#D61F06}1} \bmod 4}\bmod 20} \text{ (mod 100)} \end{aligned}

Therefore, 9 9 9 9 9 9 9 (mod 100) 9^{9^{9^9}} \equiv 9^{9^9} \text{ (mod 100)} . Yes , the two numbers have the same last two digits.

Sir, can you explain what is Carmichael lambda?

Vilakshan Gupta - 2 years, 10 months ago

Log in to reply

Refer to Carmichael's lambda function .

Chew-Seong Cheong - 2 years, 10 months ago
Brian Moehring
Jul 11, 2018

Note that for any n 0 n\geq 0 , by the binomial theorem, 9 n = ( 10 1 ) n = k = 0 n ( n k ) 1 0 k ( 1 ) n k ( 1 ) n ( 1 10 n ) ( m o d 100 ) 9^n = (10-1)^n = \sum_{k=0}^n \binom{n}{k} 10^k (-1)^{n-k} \equiv (-1)^n (1-10n) \pmod{100} In particular, 9 10 ( 1 ) 10 ( 1 1 0 2 ) 1 ( m o d 100 ) 9^{10} \equiv (-1)^{10} (1-10^2) \equiv 1 \pmod{100}

This means that 9 a , 9 b 9^a, 9^b have the same last two digits if a b ( m o d 10 ) a\equiv b \pmod{10} , and in this case, both the exponents have the form (for m = 1 m=1 or m = 9 m=9 ) 9 9 m ( 1 ) 9 m 1 ( m o d 10 ) 9^{9^m} \equiv (-1)^{9^m} \equiv -1 \pmod{10} so we can conclude that both numbers have the same last two digits.

why is the first line true? I don't understand, some clarification would be much appreciated! :)

Donát Herczeg - 2 years, 10 months ago

Log in to reply

There are a few steps in that first line.

  • First equality: 9 = 10 1 9 = 10-1
  • Second equality: By the binomial theorem ( a + b ) n = k = 0 n ( n k ) a k b n k (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} Then just let a = 10 a=10 and b = 1 b=-1 .
  • The congruence mod 100 100 : Every term of the sum has a factor of 1 0 k 10^k , so every term with k 2 k\geq 2 has a factor of 100 0 ( m o d 100 ) 100 \equiv 0 \pmod{100} . This means the only terms that aren't necessarily divisible by 100 100 are the first two terms with k = 0 , 1 k=0,1 , and their sum is ( 1 ) n ( 1 10 n ) (-1)^n(1-10n)

Brian Moehring - 2 years, 10 months ago

I solved exactly in this way. Sometimes some results in number theory help a lot in solving these problems.

Srikanth Tupurani - 2 years, 10 months ago

Simple and straightforward

Ritabrata Roy - 2 years, 10 months ago

Thank you.

A Former Brilliant Member - 2 years, 10 months ago
Kelvin Hong
Jul 23, 2018

Note that 9 2 81 1 ( m o d 40 ) 9^2\equiv81\equiv1\pmod{40} , so no matter 9 9 9^9 or 9 9 9 9^{9^9} wil leave remainder 9 ( m o d 40 ) 9\pmod{40} , as ϕ ( 100 ) = 40 \phi(100)=40 , we know both wil congruent 9 9 ( m o d 100 ) 9^9\pmod{100} which gives the S A M E \boxed{SAME} last two digits.

Jeremy Galvagni
Jul 22, 2018

9 9 = 387420489 9^{9}=387420489 , which is notable for ending in 89 89 .

The last two digits of 9 n 9^{n} have a cycle of length 10, meaning 9 a 9^{a} ends in the same two digits as 9 last digit of a 9^{\text{last digit of a}} .

So 9 9 9 9^{9^{9}} ends with 89 89 and since this ends in 9 9 , then 9 9 9 9 9^{9^{9^{9}}} also ends in 89 89

Answer is wrong. If you use a calculator, it will show you that both have different digits. 9^81 = 09 and 9^729 = 89. This is alternating. First time I am seeing everyone posting the solution for wrong answer

Vikas Jangra - 2 years, 10 months ago

Log in to reply

9 9 9 9 81 9^{9^{9}} \ne 9^{81} because powers are worked from the top down.

Jeremy Galvagni - 2 years, 10 months ago
Leonblum Iznotded
Jul 31, 2018

This is not level 1 ; this needs congruence knowledge.

Carlos Higuera
Jul 29, 2018

Rewrite the question as: ( ( 10 1 ) 9 9 ((10-1)^{{9}^9} and ( ( 10 1 ) 9 9 9 ((10-1)^{{{9}^9}^9}

By the binomial expansion: ( 10 1 ) x = k = 0 x ( x k ) 1 0 x k ( 1 ) k (10-1)^{x} =\displaystyle \sum_{k=0}^x {x \choose k }10^{x-k} (-1)^{k}

For the last components of the expansion, we get: = . . . + ( 10 ) x x ( 1 ) x = . . . + ( 1 ) x =...+ (10)^{x-x} (-1)^{x}=...+(-1)^{x}

Hence, the last component will either be: ( 1 ) o d d = 1 (-1)^{odd}=-1 or ( 1 ) e v e n = 1 (-1)^{even}=1


Now consider all the components before this last one, i.e.:

k = 0 x 1 ( x k ) 1 0 x k ( 1 ) k = ( x 0 ) 1 0 x + ( x 1 ) 1 0 x 1 ( 1 ) 1 + ( x 2 ) 1 0 x 2 ( 1 ) 2 + ( x 3 ) 1 0 x 3 ( 1 ) 3 + . . . = ( x 0 ) 1 0 x ( x 1 ) 1 0 x 1 + ( x 2 ) 1 0 x 2 ( x 3 ) 1 0 x 3 + . . . \displaystyle \sum_{k=0}^{x-1} {x \choose k }10^{x-k} (-1)^{k}={x \choose 0 }10^{x}+{x \choose 1 }10^{x-1}(-1)^{-1}+{x \choose 2 }10^{x-2}(-1)^{-2}+{x \choose 3 }10^{x-3}(-1)^{-3}+... ={x \choose 0 }10^{x}-{x \choose 1 }10^{x-1}+{x \choose 2 }10^{x-2}-{x \choose 3 }10^{x-3}+...

This will be a number n n such that n = k × 10 n=k \times 10 , i.e. a multiple of 10 or a number whose last digit is 0.

Hence, when we add the last component (either 1 -1 or 1 1 as shown before), it will either:

Subtract 1 -1 , i.e. ( k × 10 1 ) (k \times 10 -1) , making the last digit 9 9

or

Add 1 1 , i.e. ( k × 10 + 1 ) (k \times 10 +1) , making the last digit 1 1

Regardless, the last digit is always odd which makes the number always odd .


Now consider: ( ( 10 1 ) 9 9 = ( ( 10 1 ) ( 10 1 ) 9 = ( ( 10 1 ) ( 10 1 ) o d d = ( ( 10 1 ) o d d ((10-1)^{{9}^9} = ((10-1)^{{(10-1)}^{9}} =((10-1)^{{(10-1)}^{odd}} =((10-1)^{odd} which has last digit 9 9 as shown before

and:

( ( 10 1 ) 9 9 9 = ( ( 10 1 ) ( 10 1 ) ( 10 1 ) 9 = ( ( 10 1 ) ( 10 1 ) ( 10 1 ) o d d = ( ( 10 1 ) ( 10 1 ) o d d = ( ( 10 1 ) o d d ((10-1)^{{9}^{{9}^{9}}} = ((10-1)^{{(10-1)}^{{(10-1)}^{9}}} = ((10-1)^{{(10-1)}^{{(10-1)}^{odd}}} = ((10-1)^{{(10-1)}^{odd}} = ((10-1)^{odd} which has last digit 9 9 as shown before.

Therefore, the last digit of both numbers is 9.

San Seng
Jul 27, 2018

The power of 9 will end in either 1 (when the exponent is even) or 9 (when the exponent is odd)... ... ... (1) At the same time any power of 9, ending in either 1 or 9, will be odd... ... ... (2) Here 9 is raised to another power of 9. So in both cases the exponent is odd, according to (2). So, according to (1), both will end in 9.

You have to prove that the last two digits of each result are the same, not only the last one

Fabrizio Panti - 2 years, 10 months ago

Kinda can't find that simple solution in other answers: 9 × ( 10 n + 9 ) = 90 n + 80 + 1 9 \times (10n + 9) = 90n + 80 + 1 give m = 9 n + 8 m = 9n + 8 9 × ( 10 m + 1 ) = 90 m + 9 9 \times (10m + 1) = 90m + 9 give n = 9 m n = 9m
repeat to the first equation
This goes on like a loop. If you start with 9=9 and 9 square = 81 you can easily prove that odd powers of 9 display 9 as digits unit while even powers have 1. Since both powers of 9 were clearly odd powers (any power of an odd number is still an odd number and vice versa) the units digit of both should be 9. Sorry for messy English, not my first language...

Alex Mandelias
Jul 24, 2018

My thought process: The question is very specific so the answer can't possibly be "no". Voila :D

Hao Hao
Jul 23, 2018

I am from china. I am honored to introduce my methods to you. I think it is very simple and easy to understand. Let's go straight to the end.9^1---09 9^2----81 9^3-----29 9^4------61 and so on . 9^n-------???? If the"n" is an odd number the second inverse is satisfied --- {0 2 4 6 8 0 2...},and the first inverse must be nine and the reciprocal second number is "n-1"---------- If the "n"is an even number --------{8 6 4 2 0 8 6...},and the first inverse must be "1" So,9^9 is an odd number 9^9^9------------89 9^(9^9^9) is an odd number and the"n"------is "9" so------89

I hope this opinion willbe adopted

hao hao - 2 years, 10 months ago

i cannot understand after the first line please elaborate more i cannot understand your logic please help

Shahzad Hassan - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...