9 9 9 9 9 9 9
Are the last two digits of these numbers the same?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How does this imply the digits in the tens place are the same?
Log in to reply
Thanks for the information. I updated the solution with required modifications.
9^9 Out[1]: 387420489
(9^9)^9 Out[2]: 196627050475552913618075908526912116283103450944214766927315415537966391196809L
((9^9)^9)^9 Out[3]: 439328503696464329829774782657072712058010308177126710621676697750466344744764029773301412612482563729435064854354299095570379503452515853238520182740967398746503532324400000659505126023955913142968176998364877699089666171297275956245407453033190168644894850576346492691458695174281789557994923607783461486426448617667076393901104477324982631297641034277093818692823488603426279473674368943609268871793467206677285688478458498235002859256706389043030847945506577080623430066283504397583789044245429585982964571774605868466160379567432725704121260940939343217905975847365096315872153240969882363435363449775254393010368267343970426230801390250903399147001650831878665172798468587509747439118815689L
(((9^9)^9)^9)^9 Out[4]: 609683485452741112075235500724516670453115716895320025142055544060992206118345733195670930601391416031419347837381484188382881951433379123359313314933244210601512487020777732791222771893404859051590828696103799967120373592507057411946836370842145917500334762398351641542409564168524317143715760969367337242278252296192257755590138005663105597330353536830297965125372297102681424686850910639047766049279097023890339143848228023392943078063199836424226954041357578424782631862433423874215159238431543345109430718973560158757704908903172111956056366259712652853432607460910077283409427311989607857053110397329989034825569575562188685305447453330677591022902049353489382228107260629232409368999333685042946398487309186571606142468757152565434485212541721163897314567917523997823121395142317145049341594054811528070197536688303888476958771977502323653181348467752354680020863378480973818298508318268338696302019357148521532095273598636209307997253608343889856073384560577927572337867354822396908678510662371503925980869702639576971942702430789055678881944576812182580901378418898294860706790263994597430111831268711625556356745728755442130871232085685099470290641006222674784729223127188400448612887433108820629470380367355057572351376001828289026362967862424639273455806774138381983139391719563215770240694287203849677560831055766278286055921130338563008375210500966795010401951960267177086738862889331978106287759384737660872735552451751086042784918872934904760782042675129004924276356715421301922392188236481891996346794784316632052651079636553853158992053677395693092569827914929328904654596217077817628463493264816138623805861253498858607687798134962850649623019007141709446429416140168901951026952245323112428680444922280963531416429758022613714116143602824821189791450690561785985328865796850032627017572718356490100095105676235076142976078079397192618073886364752590488211991362605688529536772962022417040606636121435964110777395524949160680134182225915191726034865406003390625199182193704990935060676374990819823281721349606987499507449954162729524128628164389806486941191778116951061002959779309792915802011047015297567696262070807902590624341424651267523754995634828034132969009161722806818947979129519104094176659792899101273912529107352000213040998391280254936459774378680076331527294505187943205606116442740735027269981199798634681059824749208723590031392046892644888565623488228129233828270657491063132675457565165860856375112698580144903082943537288750935180048935928242409821465559574928773585712997132459879081492505228338041747218371864192537854458115384458443284811117109223158217922975271342526900454021410737004974056813740347900173639584819288397003446440395559967822443984946809649260538989890854424983749760215218502405535051899734436256808729304654943315380632199248966175218154536579536483392432757168748519548575914463080864612941543657975520976698508121839730376700637312871357040723739391173247004119377996460400136958194519944877775553905441128766167615205833101791439083812012979266215373806281902732533005665368905557306549177307201247839098755527254576243815293172818701056068187094337000830025044568191819338246332521176984917533143001303544936037217109408608296056961292104677778033512569311185669611058156875751920862714153337048248861344354574341358632587875957691369942874935898638113322640421405566881801965340015901941334817653304156100386242603374489197264858144897492256153754185247688137724095468876305401685269185649055671895403415607192750118946813187627716825769308937935281809880349065098912099942537186223480096589842500124598628855341293980918670736710752753161316977986970230893132883568092722417036577397419329711576046702965060147303177816991840555167389850793397172373291960986137884498969842721115448203731755432055446123713854720966435544053834531814962725787835476454058961787095965238820001762972262348644726507372696136062630889846947967042157274998728255423717506038369054453802699448067181700320583324203971673532509015002200198546220101578637871060271773723985735326312490897528624974678487604360480338646780392785676973708354370116343339372958090155236556264989945152110748284990609230744137588556473478169632324717488899232327650262587730415443828624213119263203235451460137506301422623063069888778412569821819038214360262079585844815271405169278081934512541484799168796365504402617926643709383546636558547065128407589965221536380360737164365161493586151373734502449275476098556849692098238927272648082451753057111398571676688567362269137195467250570594417851428872922702596328004678205243912526004349040271237573969332446648270076706518450787059045724992001802132113820388790929299888571160776522939260299171326471468686458863225497475144416893501180850829978771146935472015137175966533057924747021216126848140769146794309982329972559295289075792967956351607513991727110220921498308244980078479795482015372569623224939778650251487071756534749451100348226056933967588391354541511849177686493559219699542125182527593907861122968626554629883926773846771539543101525574189543625600541697540076702940379874888947144612158982466646309842628547319739077865331476463453992805226514211097711176423255674183845477168040599465258972388573208431575083860615979810029275638989851003295044555549243113839462378873502369543130242015660020602787973598572467060957381241565941205456698910482067836113482102280524406646302743470112087427472514013105288633611502785188213067980467300746437302992567150102075686265552843685417392129983164451911558907471068830798391649115996205050608599640736308585851400373853700540360971706698324794296838560001790320259128642537657946233749749278942121508917513079964037379047390153778173542741898479242726687382246938596706657693174111627846656799557424571601651943183512955281868385914251451010073404817059514241233091408860258393083571386081348796186188323378867994721747659028673328480484459679631662895194137215637219320119109291791279254127828570290501391758311749047110360962043813923111344884366144770117586736537392472191116611664818657084338613647063339077288169097994438000017977949919329083260526096133403745058519219706445278520075152513671209817461154580997332471621813987611514972532379635692724472346821600549802125671248433668213379459545260244454772731023174256697609L
Log in to reply
You have found ( 9 9 ) 9 = 9 9 2 ( ( 9 9 ) 9 ) 9 = 9 9 3 ( ( ( 9 9 ) 9 ) 9 ) 9 = 9 9 4
These are not what is written in the problem. To find these, you would need to find 9^(9^9) and 9^(9^(9^9))
I would strongly advise against your having your computer find these values exactly (they have about 3 6 9 6 9 3 1 0 0 and 1 0 3 6 9 6 9 3 1 0 0 lo g 9 digits, respectively), but depending on how your program implements modular arithmetic, it should be able to find the result modulo 100 of each.
Problem should read 9 9 9 9 9 9
Log in to reply
While that would work too, the problem as written works.
Log in to reply
Answer is wrong. If you use a calculator, it will show you that both have different digits. 9^81 = 09 and 9^729 = 89. This is alternating. First time I am seeing everyone posting the solution for wrong answer
Log in to reply
@Vikas Jangra – As a general rule, if everyone else seems to be wrong, you should check your assumptions. It's not impossible that all the posted solutions are incorrect, but it's quite unlikely for featured problems.
In this case, you have the order of operations reversed. A power tower must be evaluated from the highest power, moving down the tower.
Sir you are bj venkatchalam. Please teach me functional equation for inmo
Log in to reply
Sorry for the delay response. Please check my profile. After your comment I found books written by the author Problem Primer for the Olympiad &Functional Equations. Thank you.
Please provide any number theoretic or modular arithmetic based solution like foreigners . Why applying cycle or order Indian argument based answers.
Answer is wrong. If you use a calculator, it will show you that both have different digits. 9^81 = 09 and 9^729 = 89. This is alternating. First time I am seeing everyone posting the solution for wrong answer
Log in to reply
Order of hierarchy is 9^(9^9) and 9^(9^(9^9)). Right to Left.
9^(9^9) is not equal to (9^9)^9, because 9^(9^9)=9^387420489, which you can't put in a normal calculator, and (9^9)^9=387420489^9. Hope you could understand the difference.
Relevant wiki: Carmichael's Lambda Function
Let N = 9 9 9 9 . Since g cd ( 9 , 1 0 0 ) = 1 , we can apply Euler's theorem and the related Carmichael lambda as follows.
N ≡ 9 9 9 9 m o d λ ( 1 0 0 ) (mod 100) ≡ 9 9 9 9 m o d λ ( 2 0 ) m o d 2 0 (mod 100) ≡ 9 9 9 9 m o d 2 m o d 4 m o d 2 0 (mod 100) ≡ 9 9 9 1 m o d 4 m o d 2 0 (mod 100) Carmichael lambda λ ( 1 0 0 ) = 2 0 Again g cd ( 9 , 2 0 ) = 1 and g cd ( 9 , 4 ) = 1
Therefore, 9 9 9 9 ≡ 9 9 9 (mod 100) . Yes , the two numbers have the same last two digits.
Sir, can you explain what is Carmichael lambda?
Note that for any n ≥ 0 , by the binomial theorem, 9 n = ( 1 0 − 1 ) n = k = 0 ∑ n ( k n ) 1 0 k ( − 1 ) n − k ≡ ( − 1 ) n ( 1 − 1 0 n ) ( m o d 1 0 0 ) In particular, 9 1 0 ≡ ( − 1 ) 1 0 ( 1 − 1 0 2 ) ≡ 1 ( m o d 1 0 0 )
This means that 9 a , 9 b have the same last two digits if a ≡ b ( m o d 1 0 ) , and in this case, both the exponents have the form (for m = 1 or m = 9 ) 9 9 m ≡ ( − 1 ) 9 m ≡ − 1 ( m o d 1 0 ) so we can conclude that both numbers have the same last two digits.
why is the first line true? I don't understand, some clarification would be much appreciated! :)
Log in to reply
There are a few steps in that first line.
I solved exactly in this way. Sometimes some results in number theory help a lot in solving these problems.
Simple and straightforward
Thank you.
Note that 9 2 ≡ 8 1 ≡ 1 ( m o d 4 0 ) , so no matter 9 9 or 9 9 9 wil leave remainder 9 ( m o d 4 0 ) , as ϕ ( 1 0 0 ) = 4 0 , we know both wil congruent 9 9 ( m o d 1 0 0 ) which gives the S A M E last two digits.
9 9 = 3 8 7 4 2 0 4 8 9 , which is notable for ending in 8 9 .
The last two digits of 9 n have a cycle of length 10, meaning 9 a ends in the same two digits as 9 last digit of a .
So 9 9 9 ends with 8 9 and since this ends in 9 , then 9 9 9 9 also ends in 8 9
Answer is wrong. If you use a calculator, it will show you that both have different digits. 9^81 = 09 and 9^729 = 89. This is alternating. First time I am seeing everyone posting the solution for wrong answer
Log in to reply
9 9 9 = 9 8 1 because powers are worked from the top down.
This is not level 1 ; this needs congruence knowledge.
Rewrite the question as: ( ( 1 0 − 1 ) 9 9 and ( ( 1 0 − 1 ) 9 9 9
By the binomial expansion: ( 1 0 − 1 ) x = k = 0 ∑ x ( k x ) 1 0 x − k ( − 1 ) k
For the last components of the expansion, we get: = . . . + ( 1 0 ) x − x ( − 1 ) x = . . . + ( − 1 ) x
Hence, the last component will either be: ( − 1 ) o d d = − 1 or ( − 1 ) e v e n = 1
Now consider all the components before this last one, i.e.:
k = 0 ∑ x − 1 ( k x ) 1 0 x − k ( − 1 ) k = ( 0 x ) 1 0 x + ( 1 x ) 1 0 x − 1 ( − 1 ) − 1 + ( 2 x ) 1 0 x − 2 ( − 1 ) − 2 + ( 3 x ) 1 0 x − 3 ( − 1 ) − 3 + . . . = ( 0 x ) 1 0 x − ( 1 x ) 1 0 x − 1 + ( 2 x ) 1 0 x − 2 − ( 3 x ) 1 0 x − 3 + . . .
This will be a number n such that n = k × 1 0 , i.e. a multiple of 10 or a number whose last digit is 0.
Hence, when we add the last component (either − 1 or 1 as shown before), it will either:
Subtract − 1 , i.e. ( k × 1 0 − 1 ) , making the last digit 9
or
Add 1 , i.e. ( k × 1 0 + 1 ) , making the last digit 1
Regardless, the last digit is always odd which makes the number always odd .
Now consider: ( ( 1 0 − 1 ) 9 9 = ( ( 1 0 − 1 ) ( 1 0 − 1 ) 9 = ( ( 1 0 − 1 ) ( 1 0 − 1 ) o d d = ( ( 1 0 − 1 ) o d d which has last digit 9 as shown before
and:
( ( 1 0 − 1 ) 9 9 9 = ( ( 1 0 − 1 ) ( 1 0 − 1 ) ( 1 0 − 1 ) 9 = ( ( 1 0 − 1 ) ( 1 0 − 1 ) ( 1 0 − 1 ) o d d = ( ( 1 0 − 1 ) ( 1 0 − 1 ) o d d = ( ( 1 0 − 1 ) o d d which has last digit 9 as shown before.
Therefore, the last digit of both numbers is 9.
The power of 9 will end in either 1 (when the exponent is even) or 9 (when the exponent is odd)... ... ... (1) At the same time any power of 9, ending in either 1 or 9, will be odd... ... ... (2) Here 9 is raised to another power of 9. So in both cases the exponent is odd, according to (2). So, according to (1), both will end in 9.
You have to prove that the last two digits of each result are the same, not only the last one
Kinda can't find that simple solution in other answers:
9
×
(
1
0
n
+
9
)
=
9
0
n
+
8
0
+
1
give
m
=
9
n
+
8
9
×
(
1
0
m
+
1
)
=
9
0
m
+
9
give
n
=
9
m
repeat to the first equation
This goes on like a loop. If you start with 9=9 and 9 square = 81 you can easily prove that odd powers of 9 display 9 as digits unit while even powers have 1. Since both powers of 9 were clearly odd powers (any power of an odd number is still an odd number and vice versa) the units digit of both should be 9. Sorry for messy English, not my first language...
My thought process: The question is very specific so the answer can't possibly be "no". Voila :D
I am from china. I am honored to introduce my methods to you. I think it is very simple and easy to understand. Let's go straight to the end.9^1---09 9^2----81 9^3-----29 9^4------61 and so on . 9^n-------???? If the"n" is an odd number the second inverse is satisfied --- {0 2 4 6 8 0 2...},and the first inverse must be nine and the reciprocal second number is "n-1"---------- If the "n"is an even number --------{8 6 4 2 0 8 6...},and the first inverse must be "1" So,9^9 is an odd number 9^9^9------------89 9^(9^9^9) is an odd number and the"n"------is "9" so------89
I hope this opinion willbe adopted
i cannot understand after the first line please elaborate more i cannot understand your logic please help
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Finding the last few digits of a power
The last two digits of the powers of 9 repeats with the cycle length of 10.