Twice as Big

Geometry Level 5

F F is chosen on the unit square A B C D ABCD so that the radius of the yellow circle is twice the radius of the blue circle. If the yellow radius is a root of f ( x ) = a x 3 + b x 2 + c x + d f(x) = ax^3 + bx^2 + cx + d , where gcd ( a , b , c , d ) = 1 \gcd (a,b,c,d) = 1 , and a > 0 a > 0 , find f ( 6 ) f(6) .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Referring to the figure, let C B K = C B K = θ \angle CBK=\angle CBK=\theta , where K K is the center of the blue circle. Let r r and 2 r 2r be the radii the two circles. We have the relation B C = B E + E C 1 = r cot θ + r cot θ = 1 r 1 BC=BE+EC\Rightarrow 1=r\cot \theta +r\Rightarrow \cot \theta =\frac{1}{r}-1 Hence, B F = r cot θ + r cot ( 45 θ ) = r ( cot θ + cot θ 1 cot θ + 1 ) = r ( ( 1 r 1 ) + ( 1 r 1 ) + 1 ( 1 r 1 ) 1 ) B F = 1 2 r + 2 r 2 1 2 r ( 1 ) \begin{aligned} BF & =r\cot \theta +r\cot \left( 45{}^\circ -\theta \right) \\ & =r\left( \cot \theta +\dfrac{\cot \theta -1}{\cot \theta +1} \right) \\ & =r\left( \left( \dfrac{1}{r}-1 \right)+\dfrac{\left( \dfrac{1}{r}-1 \right)+1}{\left( \dfrac{1}{r}-1 \right)-1} \right) \\ \Rightarrow BF=\dfrac{1-2r+2{{r}^{2}}}{1-2r} \ \ \ \ \ (1)\\ \end{aligned} Moreover, F C = F G + G C F C = r cot ( 45 θ ) + r F C = r cot θ + 1 cot θ 1 + r F C = r ( 1 r 1 ) + 1 ( 1 r 1 ) 1 + r F C = 2 r 2 r 2 1 2 r \begin{aligned} FC=FG+GC & \Rightarrow FC=r\cot \left( 45{}^\circ -\theta \right)+r \\ & \Rightarrow FC=r\dfrac{\cot \theta +1}{\cot \theta -1}+r \\ & \Rightarrow FC=r\dfrac{\left( \dfrac{1}{r}-1 \right)+1}{\left( \dfrac{1}{r}-1 \right)-1}+r \\ & \Rightarrow FC=\dfrac{2r-2{{r}^{2}}}{1-2r} \\ \end{aligned} Hence, D F = 1 F C = 1 2 r 2 r 2 1 2 r = 1 4 r + 2 r 2 1 2 r DF=1-FC=1-\dfrac{2r-2{{r}^{2}}}{1-2r}=\dfrac{1-4r+2{{r}^{2}}}{1-2r} By Pythagorean theorem on A D F \triangle ADF , A F 2 = A D 2 + D F 2 = 1 + ( 1 4 r + 2 r 2 1 2 r ) 2 A{{F}^{2}}=A{{D}^{2}}+D{{F}^{2}}=1+{{\left( \dfrac{1-4r+2{{r}^{2}}}{1-2r} \right)}^{2}} Thus, A F = 1 + ( 1 4 r + 2 r 2 1 2 r ) 2 ( 2 ) AF=\sqrt{1+{{\left( \dfrac{1-4r+2{{r}^{2}}}{1-2r} \right)}^{2}}} \ \ \ \ \ (2) Using ( 1 ) (1) and ( 2 ) (2) we have an expression for the perimeter of A F B \triangle AFB : P A F B = A B + B F + A F = 1 + 1 2 r + 2 r 2 1 2 r + 1 + ( 1 4 r + 2 r 2 1 2 r ) 2 {{P}_{AFB}}=AB+BF+AF=1+\dfrac{1-2r+2{{r}^{2}}}{1-2r}+\sqrt{1+{{\left( \dfrac{1-4r+2{{r}^{2}}}{1-2r} \right)}^{2}}} Finally, we use the area formula for A F B \triangle AFB to set and solve an equation for r r : [ A F B ] = 1 2 P A F B ( 2 r ) 1 2 = 1 2 P A F B ( 2 r ) 1 = 2 r ( 1 + 1 2 r + 2 r 2 1 2 r + 1 + ( 1 4 r + 2 r 2 1 2 r ) 2 ) 1 = 2 r ( ( 1 2 r ) + ( 1 2 r + 2 r 2 ) 1 2 r + ( 1 2 r ) 2 + ( 1 4 r + 2 r 2 ) 2 1 2 r ) 1 2 r = 2 r ( 2 4 r + 2 r 2 + 4 r 4 16 r 3 + 24 r 2 12 r + 2 ) 1 2 r = 4 r 8 r 2 + 4 r 3 + 2 r 4 r 4 16 r 3 + 24 r 2 12 r + 2 1 6 r + 8 r 2 4 r 3 = 2 r 4 r 4 16 r 3 + 24 r 2 12 r + 2 ( 1 6 r + 8 r 2 4 r 3 ) 2 = 4 r 2 ( 4 r 4 16 r 3 + 24 r 2 12 r + 2 ) 16 r 6 64 r 5 + 112 r 4 104 r 3 + 52 r 2 12 r + 1 = 16 r 6 64 r 5 + 96 r 4 48 r 3 + 8 r 2 16 r 4 56 r 3 + 44 r 2 12 r + 1 = 0 ( 2 r 1 ) ( 8 r 3 24 r 2 + 10 r 1 ) = 0 \begin{aligned} & \left[ AFB \right]=\dfrac{1}{2}{{P}_{AFB}}\cdot \left( 2r \right)\Rightarrow \dfrac{1}{2}=\dfrac{1}{2}{{P}_{AFB}}\cdot \left( 2r \right) \\ & 1=2r\left( 1+\dfrac{1-2r+2{{r}^{2}}}{1-2r}+\sqrt{1+{{\left( \dfrac{1-4r+2{{r}^{2}}}{1-2r} \right)}^{2}}} \right) \\ & 1=2r\left( \dfrac{\left( 1-2r \right)+\left( 1-2r+2{{r}^{2}} \right)}{1-2r}+\dfrac{\sqrt{{{\left( 1-2r \right)}^{2}}+{{\left( 1-4r+2{{r}^{2}} \right)}^{2}}}}{1-2r} \right) \\ & 1-2r=2r\left( 2-4r+2{{r}^{2}}+\sqrt{4{{r}^{4}}-16{{r}^{3}}+24{{r}^{2}}-12r+2} \right) \\ & 1-2r=4r-8{{r}^{2}}+4{{r}^{3}}+2r\sqrt{4{{r}^{4}}-16{{r}^{3}}+24{{r}^{2}}-12r+2} \\ & 1-6r+8{{r}^{2}}-4{{r}^{3}}=2r\sqrt{4{{r}^{4}}-16{{r}^{3}}+24{{r}^{2}}-12r+2} \\ & {{\left( 1-6r+8{{r}^{2}}-4{{r}^{3}} \right)}^{2}}=4{{r}^{2}}\left( 4{{r}^{4}}-16{{r}^{3}}+24{{r}^{2}}-12r+2 \right) \\ & \cancel{16{{r}^{6}}}-\bcancel{64{{r}^{5}}}+112{{r}^{4}}-104{{r}^{3}}+52{{r}^{2}}-12r+1=\cancel{16{{r}^{6}}}-\bcancel{64{{r}^{5}}}+96{{r}^{4}}-48{{r}^{3}}+8{{r}^{2}} \\ & 16{{r}^{4}}-56{{r}^{3}}+44{{r}^{2}}-12r+1=0 \\ & \left( 2r-1 \right)\left( 8{{r}^{3}}-24{{r}^{2}}+10r-1 \right)=0 \\ \end{aligned}

Since 2 r < 1 2r<1 , we get 8 r 3 24 r 2 + 10 r 1 = 0 ( 2 r ) 3 6 ( 2 r ) 2 + 5 ( 2 r ) 1 = 0 8{{r}^{3}}-24{{r}^{2}}+10r-1=0\Leftrightarrow {{\left( 2r \right)}^{3}}-6{{\left( 2r \right)}^{2}}+5\left( 2r \right)-1=0 From this we see that the radius 2 r 2r of the yellow circle is a root of f ( x ) = x 3 6 x 2 + 5 x 1 f\left( x \right)={{x}^{3}}-6{{x}^{2}}+5x-1 .

For the answer, f ( 6 ) = 29 f\left( 6 \right)=\boxed{29} .

"After some algebra" is a bit understated. :). Good job! The cubic for r r is correct, but I don't understand how you got from there to f ( x ) = 2 x 3 12 x 2 + 5 x 1 f(x) = 2x^3 - 12x^2 + 5x - 1 .

Fletcher Mattox - 2 months, 3 weeks ago

Log in to reply

If r r is the root to the polynomial g ( X ) = 8 X 3 24 X 2 + 12 X 1 g(X) = 8X^3 - 24X^2 + 12X - 1 , then 2 r 2r is the root to the polynomial g ( X 2 ) = 2 X 3 12 X 2 + 5 X 1 g(\frac X2) =2X^3 - 12X^2 + 5X - 1 .

Pi Han Goh - 2 months, 3 weeks ago

Log in to reply

Got it. Thank you.

Fletcher Mattox - 2 months, 3 weeks ago

Log in to reply

@Fletcher Mattox @Fletcher Mattox @Pi Han Goh - Sorry, there are two copy-paste typos in my solution.
1) I put the wrong equation as the result of this dizzying "some algebra" I tackled.
2) The coefficients in f ( x ) f(x) are also not the ones I had finally got (obviously, the correct answer didn’t come from the polynomial I wrote). I have edited these typos. I thought that writing "after some algebra" would be enough to skip this boring manipulation, but, for Fletcher :), I've added the missing steps.

Thanos Petropoulos - 2 months, 3 weeks ago

Log in to reply

@Thanos Petropoulos Ahh, and I thought something went wrong with my calculation.

Fantastic attached image and solution as always. Thank you.

Pi Han Goh - 2 months, 3 weeks ago

@Thanos Petropoulos @Thanos Petropoulos your solutions are always a joy to read. Thank you!

Fletcher Mattox - 2 months, 3 weeks ago

Log in to reply

@Fletcher Mattox @Fletcher Mattox , @Pi Han Goh - Thank you both. Again I'm sorry for the confusion my original text has caused.

Thanos Petropoulos - 2 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...