TwistedSquares 2

Calculus Level 4

The upper picture shows 3 squares nested inside the outer square, each rotated 9 0 3 = 3 0 \frac{90^{\circ}}{3}=30^{\circ} from the one outside it.

The lower picture shows 5 squares nested inside the outer square, each rotated 9 0 5 = 1 8 \frac{90^{\circ}}{5}=18^{\circ} from the one outside it.

Let us consider making n n squares nested inside the outer square, each rotated 9 0 n \frac{90^{\circ}}{n} from the one outside it. If a a is the side length of the smallest square divided by the side length of the largest square, find lim n a \displaystyle \lim_{n\to\infty} a .


The answer is 0.2078795764.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jeremy Galvagni
Aug 1, 2018

First, we need to find how the sides shrink based on the angle. tan θ = 1 x x \tan{\theta}=\frac{1-x}{x} so x = 1 tan θ + 1 x=\frac{1}{\tan{\theta}+1} . Also, cos θ = x y \cos{\theta}=\frac{x}{y} .

Put these together and you get y = 1 c o s θ ( tan θ + 1 ) = 1 s i n θ + cos θ y=\frac{1}{cos{\theta}(\tan{\theta}+1)}=\frac{1}{sin{\theta}+\cos{\theta}}

So this is the ratio from one square to the next smaller. Working in radians θ = π 2 n \theta=\frac{\pi}{2n} and the ratio is applied n n times so we seek

lim n ( sin π 2 n + cos π 2 n ) n \lim_{n\to\infty}(\sin{\frac{\pi}{2n}}+\cos{\frac{\pi}{2n})^{-n}}

Which WolframAlpha tells me is e π / 2 0.2078795764 e^{-\pi/2} \approx \boxed{0.2078795764}

Okay, better go check WolframAlpha, because the limit is e π 2 = 0.2078795764 e^{-\frac{\pi}{2}}=0.2078795764

Incidentially, i i = e π 2 i^i=e^{-\frac{\pi}{2}}

In the limiting case, we have the classic logarithmic spiral r = a e b θ r=a \cdot e^{b\theta} in polar coordinates, where a a is arbitrary but b = 1 b=1 if it always makes an angle of 45 45 degrees with the radial line to the origin. So, for a quarter turn, the ratio is e π 2 e^{-\frac{\pi}{2}}

Michael Mendrin - 2 years, 10 months ago

Log in to reply

Thanks. I've updated the answer to 0.2078795764. Those who previously answered 0.2078795764 has been marked correct.

I've also updated the last line of Jeremy's solution.

Brilliant Mathematics Staff - 2 years, 10 months ago

At the beginning,I started from the inside.

If the smaller rectangle's side length is 1,then it's simple to see that the bigger one's side length is sin θ + cos θ \sin\theta+\cos\theta

X X - 2 years, 10 months ago

Sorry for the confusion. I was confusing myself over whether to make the problem be about side length or area and I made a mistake when I switched back and forth. Area would have made the answer e π e^{-\pi} and when I switched back to side length I misplaced the division.

Jeremy Galvagni - 2 years, 10 months ago

Relevant wiki: L'Hopital's Rule - Basic

Let the side lengths of the largest square to the smallest square be a 0 a_0 , a 1 a_1 , a 2 a_2 ... a n a_n respectively. We note that

a 0 = a 1 sin π 2 n + a 1 cos π 2 n a 1 = a 0 sin π 2 n + cos π 2 n Similarly, a 2 = a 1 sin π 2 n + cos π 2 n = a 0 ( sin π 2 n + cos π 2 n ) 2 a 3 = a 0 ( sin π 2 n + cos π 2 n ) 3 = a n = a 0 ( sin π 2 n + cos π 2 n ) n a = a n a 0 = 1 ( sin π 2 n + cos π 2 n ) n \begin{aligned} a_0 & = a_1\sin \frac \pi{2n} + a_1\cos \frac \pi{2n} \\ \implies a_1 & = \frac {a_0}{\sin \frac \pi{2n} + \cos \frac \pi{2n}} & \small \color{#3D99F6} \text{Similarly,} \\ a_2 & = \frac {a_1}{\sin \frac \pi{2n} + \cos \frac \pi{2n}} = \frac {a_0}{\left(\sin \frac \pi{2n} + \cos \frac \pi{2n}\right)^2} \\ a_3 & = \frac {a_0}{\left(\sin \frac \pi{2n} + \cos \frac \pi{2n}\right)^3} \\ \cdots & = \cdots \\ \implies a_n & = \frac {a_0}{\left(\sin \frac \pi{2n} + \cos \frac \pi{2n}\right)^n} \\ a & = \frac {a_n}{a_0} = \frac 1{\left(\sin \frac \pi{2n} + \cos \frac \pi{2n}\right)^n} \end{aligned}

lim n a = lim n 1 ( sin π 2 n + cos π 2 n ) n A 1 case, the following applies = exp ( lim n n ( sin π 2 n + cos π 2 n 1 ) ) lim x ( f ( x ) ) g ( x ) = e lim x g ( x ) ( f ( x ) 1 ) = exp ( lim x 0 π 2 ( sin x + cos x 1 x ) ) Let x = π 2 n = exp ( π 2 ( lim x 0 sin x x + lim x 0 cos x 1 x ) ) A 0/0 case, L’H o ˆ pital’s rule applies = exp ( π 2 ( 1 + lim x 0 sin x 1 ) ) Differentiate up and down w.r.t. x = exp ( π 2 ( 1 + 0 ) ) = e π 2 0.208 \begin{aligned} \lim_{n \to \infty} a & = \lim_{n \to \infty} \frac 1{\left(\sin \frac \pi{2n} + \cos \frac \pi{2n}\right)^n} & \small \color{#3D99F6} \text{A }1^\infty \text{ case, the following applies} \\ & = \exp \left( \lim_{n \to \infty} -n \left(\sin \frac \pi{2n} + \cos \frac \pi{2n} - 1 \right) \right) & \small \color{#3D99F6} \implies \lim_{x \to \infty} (f(x))^{g(x)} = e^{\lim_{x\to \infty} g(x)(f(x)-1)} \\ & = \exp \left( \lim_{x \to 0} - \frac \pi 2 \left(\frac {\sin x + \cos x - 1}x \right) \right) & \small \color{#3D99F6} \text{Let }x = \frac \pi{2n} \\ & = \exp \left(-\frac \pi 2 \left(\lim_{x \to 0} \frac {\sin x}x +\color{#3D99F6} \lim_{x \to 0} \frac {\cos x - 1}x \right) \right) & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies} \\ & = \exp \left(-\frac \pi 2 \left(1 +\color{#3D99F6} \lim_{x \to 0} \frac {-\sin x}1 \right) \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \exp \left(-\frac \pi 2 \left(1 +\color{#3D99F6} 0 \right) \right) \\ & = e^{-\frac \pi 2} \approx \boxed{0.208} \end{aligned}


Reference: Limit for 1 1^\infty case, see method 2 .

Could you elaborate on that second step on the limit? specifically what I do not get is: lim x ( f ( x ) ) g ( x ) = exp ( ln ( lim x ( f ( x ) ) g ( x ) ) ) = exp ( lim x g ( x ) ln ( f ( x ) ) ) = ? exp ( lim x g ( x ) ( f ( x ) 1 ) ) \lim_{x\rightarrow\infty}\big(f(x)\big)^{g(x)}=\exp\left(\ln\left(\lim_{x\rightarrow\infty}\big(f(x)\big)^{g(x)}\right)\right)=\exp\left(\lim_{x\rightarrow\infty}g(x)\ln\big(f(x)\big)\right)\stackrel{?}{=}\exp\left(\lim_{x\rightarrow\infty}g(x)\big(f(x)-1\big)\right)

Jose Fernandez Goycoolea - 2 years, 10 months ago

Log in to reply

Check out the reference: Limit for 1 1^\infty , see method 2 .

Chew-Seong Cheong - 2 years, 10 months ago

Log in to reply

Ok, I guess a general property here could be stated as: given lim x a f ( x ) = 0 \lim_{x\rightarrow a} f(x)=0 and lim x a g ( x ) = \lim_{x\rightarrow a} g(x)=\infty then

lim x a ( 1 + f ( x ) ) g ( x ) = exp ( lim x a f ( x ) g ( x ) ) \lim_{x\rightarrow a}(1+f(x))^{g(x)}=\exp\left(\lim_{x\rightarrow a}f(x) g(x)\right)

This makes intuitive sense to me (I haven't proven anything). Am I right?

Jose Fernandez Goycoolea - 2 years, 10 months ago

Log in to reply

@Jose Fernandez Goycoolea I am not sure whether you are right.

Chew-Seong Cheong - 2 years, 10 months ago
Steven Yuan
Aug 2, 2018

As the other solutions show, we have a = ( sin π 2 n + cos π 2 n ) n , a = \left ( \sin \dfrac{\pi}{2n} + \cos \dfrac{\pi}{2n} \right )^{-n}, and we want to find L = lim n a . L = \displaystyle \lim_{n \rightarrow \infty} a. In this present form, we cannot use L'Hopital's rule to find the limit, but the f ( n ) n f(n)^n form of a a suggests that taking the natural logarithm of the limit might yield some results. So we proceed:

L = lim n ( sin π 2 n + cos π 2 n ) n ln L = lim n ln ( sin π 2 n + cos π 2 n ) n ln L = lim n n ln ( sin π 2 n + cos π 2 n ) . \begin{aligned} L &= \lim_{n \rightarrow \infty} \left ( \sin \dfrac{\pi}{2n} + \cos \dfrac{\pi}{2n} \right )^{-n} \\ \ln L &= \lim_{n \rightarrow \infty} \ln \left ( \sin \dfrac{\pi}{2n} + \cos \dfrac{\pi}{2n} \right )^{-n} \\ \ln L &= \lim_{n \rightarrow \infty} -n \ln \left ( \sin \dfrac{\pi}{2n} + \cos \dfrac{\pi}{2n} \right ). \\ \end{aligned}

From here, we can turn the limit into an 0 0 \dfrac{0}{0} indeterminate form by writing n -n as 1 1 n , \dfrac{1}{-\frac{1}{n}}, which we can apply L'Hopital's on:

ln L = lim n ln ( sin π 2 n + cos π 2 n ) 1 n ln L = lim n 1 sin π 2 n + cos π 2 n ( cos π 2 n sin π 2 n ) ( π 2 n 2 ) 1 n 2 . \begin{aligned} \ln L &= \lim_{n \rightarrow \infty} \dfrac{\ln \left ( \sin \frac{\pi}{2n} + \cos \frac{\pi}{2n} \right )}{-\frac{1}{n}} \\ \ln L &= \lim_{n \rightarrow \infty} \dfrac{\frac{1}{\sin \frac{\pi}{2n} + \cos \frac{\pi}{2n}} \cdot \left ( \cos \frac{\pi}{2n} - \sin \frac{\pi}{2n} \right ) \cdot \left ( -\frac{\pi}{2n^2} \right ) }{\frac{1}{n^2}}. \end{aligned}

(See the Addendum at the bottom for the calculation of the derivative of ln ( sin π 2 n + cos π 2 n ) . \ln \left ( \sin \dfrac{\pi}{2n} + \cos \dfrac{\pi}{2n} \right ). )

Cleaning up the expression, we finally have

ln L = lim n π 2 sin π 2 n cos π 2 n sin π 2 n + cos π 2 n ln L = π 2 0 1 0 + 1 ln L = π 2 L = e π / 2 , \begin{aligned} \ln L &= \lim_{n \rightarrow \infty} \dfrac{\pi}{2} \dfrac{\sin \frac{\pi}{2n} - \cos \frac{\pi}{2n}}{\sin \frac{\pi}{2n} + \cos \frac{\pi}{2n}} \\ \ln L &= \dfrac{\pi}{2} \cdot \dfrac{0 - 1}{0 + 1} \\ \ln L &= -\dfrac{\pi}{2} \\ L &= \boxed{e^{-\pi / 2}}, \end{aligned}

which is approximately 0.208 \boxed{0.208} to three decimal places. \blacksquare


Addendum : To find the derivative of ln ( sin π 2 n + cos π 2 n ) , \ln \left ( \sin \dfrac{\pi}{2n} + \cos \dfrac{\pi}{2n} \right ), we have to apply the chain rule twice: once on the expression in the natural log, and once on the sine and cosine expressions.

d d n [ ln ( sin π 2 n + cos π 2 n ) ] = 1 sin π 2 n + cos π 2 n d d n [ sin π 2 n + cos π 2 n ] = 1 sin π 2 n + cos π 2 n ( cos π 2 n sin π 2 n ) d d n [ π 2 n ] = 1 sin π 2 n + cos π 2 n ( cos π 2 n sin π 2 n ) ( π 2 n 2 ) . \begin{aligned} \dfrac{d}{dn} \left [ \ln \left ( \sin \dfrac{\pi}{2n} + \cos \dfrac{\pi}{2n} \right ) \right ] &= \dfrac{1}{\sin \frac{\pi}{2n} + \cos \frac{\pi}{2n}} \cdot \dfrac{d}{dn} \left [ \sin \dfrac{\pi}{2n} + \cos \dfrac{\pi}{2n} \right ] \\ &= \dfrac{1}{\sin \frac{\pi}{2n} + \cos \frac{\pi}{2n}} \cdot \left ( \cos \dfrac{\pi}{2n} - \sin \dfrac{\pi}{2n} \right ) \cdot \dfrac{d}{dn} \left [ \dfrac{\pi}{2n} \right ] \\ &= \dfrac{1}{\sin \frac{\pi}{2n} + \cos \frac{\pi}{2n}} \cdot \left ( \cos \dfrac{\pi}{2n} - \sin \dfrac{\pi}{2n} \right ) \cdot \left ( -\dfrac{\pi}{2n^2} \right ). \end{aligned}

Michael Mendrin
Aug 2, 2018

If x = π 2 n x=\dfrac{\pi}{2n} for large n n , then the series expansion of S i n ( x ) + C o s ( x ) Sin(x)+Cos(x) is

S i n ( x ) + C o s ( x ) = 1 + x 1 2 x 2 . . . Sin(x)+Cos(x)=1+x-\dfrac{1}{2}x^2-... , so that

lim x 0 ( S i n ( x ) + C o s ( x ) ) 1 x = lim x 0 ( 1 + x ) 1 x = e 1 \displaystyle \lim_{x\to 0} \left( Sin(x) + Cos(x) \right)^{-\frac{1}{x}}= \displaystyle \lim_{x\to 0} \left (1+x\right)^{-\frac{1}{x}}=e^{-1}

Letting x = π 2 n x=\dfrac{\pi}{2n} , we have

lim n ( S i n ( π 2 n ) + C o s ( π 2 n ) ) 2 n π = e 1 \displaystyle \lim_{n\to \infty} \left( Sin \left( \dfrac{\pi}{2n} \right) + Cos \left(\dfrac{\pi}{2n} \right ) \right)^{-\dfrac{2n}{\pi}} =e^{-1}

or

lim n ( S i n ( π 2 n ) + C o s ( π 2 n ) ) n = e π 2 \displaystyle \lim_{n\to \infty} \left( Sin \left( \dfrac{\pi}{2n} \right) + Cos \left(\dfrac{\pi}{2n} \right ) \right)^{-n} =e^{-\frac{\pi}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...