An algebra problem by Achal Jain

Algebra Level 2

Let a , b , c , d a,b,c,d be positive real numbers such that a + b + c + d = 4 a+b+c+d=4 .

What is the minimum value of

1 a 2 + 1 + 1 b 2 + 1 + 1 c 2 + 1 + 1 d 2 + 1 ? \frac { 1 }{ { a }^{ 2 }+1 } +\frac { 1 }{ { b }^{ 2 }+1 } +\frac { 1 }{ { c }^{ 2 }+1 } + \frac { 1 }{ { d }^{ 2 }+1 } ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ankit Kumar Jain
Feb 15, 2017

By AM - GM Inequality ,

a 2 + 1 2 a a^{2} + 1 \geq 2a

1 a 2 + 1 1 2 a \Rightarrow \dfrac{1}{a^2 + 1} \leq \dfrac{1}{2a}

a 2 a 2 + 1 a 2 \Rightarrow \dfrac{a^{2}}{a^{2} + 1} \leq \dfrac{a}{2} .

Similarly writing for ( b , c , d ) \left(b , c , d\right) and adding all we get ,

a 2 a 2 + 1 + b 2 b 2 + 1 + c 2 c 2 + 1 + d 2 d 2 + 1 a 2 + b 2 + c 2 + d 2 = 2 \dfrac{a^{2}}{a^{2} + 1} + \dfrac{b^{2}}{b^{2} + 1} + \dfrac{c^{2}}{c^{2} + 1} + \dfrac{d^{2}}{d^{2} + 1} \leq \dfrac{a}{2} + \dfrac{b}{2} + \dfrac{c}{2} + \dfrac{d}{2} = 2

Therefore ,

a 2 a 2 + 1 + b 2 b 2 + 1 + c 2 c 2 + 1 + d 2 d 2 + 1 a 2 + b 2 + c 2 + d 2 = 2 \dfrac{-a^{2}}{a^{2} + 1} + \dfrac{-b^{2}}{b^{2} + 1} + \dfrac{-c^{2}}{c^{2} + 1} + \dfrac{-d^{2}}{d^{2} + 1} \geq \dfrac{-a}{2} + \dfrac{-b}{2} + \dfrac{-c}{2} + \dfrac{-d}{2} = -2

1 a 2 a 2 + 1 + 1 b 2 b 2 + 1 + 1 c 2 c 2 + 1 + 1 d 2 d 2 + 1 4 2 = 2 1 - \dfrac{a^{2}}{a^{2} + 1} + 1 - \dfrac{b^{2}}{b^{2} + 1} + 1 - \dfrac{c^{2}}{c^{2} + 1} + 1 - \dfrac{d^{2}}{d^{2} + 1} \geq 4 - 2 = 2 .

1 a 2 + 1 + 1 b 2 + 1 + 1 c 2 + 1 + 1 d 2 + 1 2 \Rightarrow \dfrac { 1 }{ { a }^{ 2 }+1 } +\dfrac { 1 }{ { b }^{ 2 }+1 } +\dfrac { 1 }{ { c }^{ 2 }+1 } + \dfrac { 1 }{ { d }^{ 2 }+1 } \geq 2 .

Equality holds when a = b = c = d = 1 a = b = c = d = 1

Very well done solution +1 from me

Md Zuhair - 4 years, 4 months ago

Log in to reply

@Md Zuhair Thanks!!

Ankit Kumar Jain - 4 years, 4 months ago
Md Zuhair
Nov 26, 2016

Relevant wiki: Titu's Lemma

This can be done by Titu's Lemma

Now here by applying Titu's Lemma we get,

1 a 2 + 1 + 1 b 2 + 1 + 1 c 2 + 1 + 1 d 2 + 1 \frac{ 1 }{{ a }^{ 2 }+1 } +\frac { 1 }{ { b }^{ 2 }+1 } +\frac { 1 }{ { c }^{ 2 }+1 } + \frac { 1 }{ { d }^{ 2 }+1 } >= 4 2 a 2 + b 2 + c 2 + d 2 + 4 \frac{4^2}{a^2+b^2+c^2+d^2+4}

Now a + b + c + d = 4 a+b+c+d=4 Hence by AM GM we get a b c d < = 1 abcd<=1

And a 2 + b 2 + c 2 + d 2 > = 4 a^2+b^2+c^2+d^2>=4 .

Hence putting value in the 1st equation we get, 4 2 / 8 = 2 4^2/8= 2

@achal jain isn't it correct?

Md Zuhair - 4 years, 6 months ago

@Md Zuhair It is wrong , If you substitute a smaller value in the denominator , it makes the fraction larger and hence you can't substitute it like that.

Ankit Kumar Jain - 4 years, 4 months ago

Log in to reply

So you give a solution.

Md Zuhair - 4 years, 4 months ago

Log in to reply

I have posted one.

Ankit Kumar Jain - 4 years, 4 months ago

Log in to reply

@Ankit Kumar Jain Ok... Thanks

Md Zuhair - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...