Two nested radicals

Calculus Level 4

5 5 5 5 5 18 15 12 9 6 3 5 5 2 5 3 5 4 5 5 19 16 13 10 7 4 = ? \displaystyle \sqrt[3]{5\sqrt[6]{5\sqrt[9]{5\sqrt[12]{5\sqrt[15]{5\sqrt[18]{\cdots}}}}}}-\sqrt[4]{5\sqrt[7]{5^2\sqrt[10]{5^3\sqrt[13]{5^4\sqrt[16]{5^5\sqrt[19]{\cdots}}}}}}=?

(Report your answer 2 places after decimal)


The answer is 0.18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From A Nested Radical we get 5 5 2 5 3 5 4 5 5 19 16 13 10 7 4 = 5 3 1.709976 \sqrt[4]{5\sqrt[7]{5^2\sqrt[10]{5^3\sqrt[13]{5^4\sqrt[16]{5^5\sqrt[19]{\cdots}}}}}}=\sqrt[3]{5} \approx 1.709976 .

5 5 5 5 5 18 15 12 9 6 3 = ( 5 ( 5 ( 5 ( ) 1 12 ) 1 9 ) 1 6 ) 1 3 = exp ( ln 5 ( 1 3 + 1 3 1 6 + 1 3 1 6 1 9 + ) ) where exp ( x ) = e x . 5 5 5 5 5 18 15 12 9 6 3 = exp ( ln 5 e 3 1 ) = 5 e 3 1 1.8902586 ( See # below) the answer is 1.8902586 1.709976 0.18 \sqrt[3]{5\sqrt[6]{5\sqrt[9]{5\sqrt[12]{5\sqrt[15]{5\sqrt[18]{\cdots}}}}}}=\left(5 \left(5 \left(5 \left(\cdots \right)^\frac 1{12} \right)^\frac 19 \right)^\frac 16 \right)^\frac 13=\exp \left(\ln 5 {\color{#3D99F6} \left(\frac 13 + \frac 13 \cdot \frac 16 + \frac 13 \cdot \frac 16 \cdot \frac 19 + \cdots \right)} \right) \small \color{#3D99F6} \text{where }\exp (x) = e^x. \\ \implies \sqrt[3]{5\sqrt[6]{5\sqrt[9]{5\sqrt[12]{5\sqrt[15]{5\sqrt[18]{\cdots}}}}}}=\exp \left(\ln {5^{\sqrt[3]{e}-1}} \right) =5^{\sqrt[3]{e}}-1 \approx 1.8902586 \text{( See \# below)} \\ \therefore \text{the answer is } 1.8902586-1.709976 \approx \color{#3D99F6}0.18

#Proof of ( 1 3 + 1 3 1 6 + 1 3 1 6 1 9 + ) = e 3 1 \displaystyle \color{#3D99F6} \left(\frac 13 + \frac 13 \cdot \frac 16 + \frac 13 \cdot \frac 16 \cdot \frac 19 + \cdots \right)=\sqrt[3]{e}-1

We know, n ! = n ( n 1 ) ( n 2 ) ( n 3 ) 2 1 n!=n(n-1)(n-2)(n-3)\cdots 2\cdot 1 hence,

3 n n ! = ( 3 n ) ( 3 n 3 ) ( 3 n 6 ) ( 3 n 9 ) 6 3 3^n\cdot n!=(3n)(3n-3)(3n-6)(3n-9)\cdots 6\cdot 3 writing in reverse we get 3 n n ! = 3 6 9 ( 3 n 9 ) ( 3 n 6 ) ( 3 n 3 ) ( 3 n ) 3^n\cdot n!=3\cdot 6\cdot 9\cdots (3n-9)(3n-6)(3n-3)(3n)

Also, e x 1 = n = 1 x n n ! \displaystyle e^x-1=\sum_{n=1}^{\infty}{\frac {x^n}{n!}}

Putting x = 1 3 \displaystyle x=\frac 13 we get:

e 3 1 = n = 1 1 3 n n ! = ( 1 3 + 1 3 1 6 + 1 3 1 6 1 9 + ) \displaystyle \sqrt[3]{e}-1=\sum_{n=1}^{\infty}{\frac 1{3^n\cdot n!}}=\left(\frac 13 + \frac 13 \cdot \frac 16 + \frac 13 \cdot \frac 16 \cdot \frac 19 + \cdots \right)

Chew-Seong Cheong
Nov 24, 2017

P 1 = 5 5 5 12 9 6 3 = ( 5 ( 5 ( 5 ( 5 ) 1 12 ) 1 9 ) 1 6 ) 1 3 = 5 1 3 5 1 3 1 6 5 1 3 1 6 1 9 = k = 1 5 1 3 k k ! = exp ( ln 5 k = 1 1 3 k k ! ) = exp ( ln 5 ( e 1 3 1 ) ) 1.8903 \begin{aligned} P_1 & = \sqrt[3]{5\sqrt[6]{5\sqrt[9]{5\sqrt[12]{\cdots}}}} = \left(5 \left(5 \left(5 \left(5 \cdots \right)^\frac 1{12} \right)^\frac 19 \right)^\frac 16\right)^\frac 13 = 5^\frac 13 5^{\frac 13 \cdot \frac 16}5^{\frac 13 \cdot \frac 16 \cdot \frac 19} \cdots = \prod_{k=1}^\infty 5^{\frac 1{3^kk!}} \\ & = \exp \left(\ln 5 \sum_{k=1}^\infty \frac 1{3^k k!}\right) = \exp \left( \ln 5 (e^\frac 13-1)\right) \approx 1.8903 \end{aligned}

P 2 = 5 5 2 5 3 13 10 7 4 Since n n 2 n 3 4 x + 1 3 x + 1 2 x + 1 x + 1 = n x (see reference) = 5 3 1.7010 \begin{aligned} P_2 & = \sqrt[4]{5\sqrt[7]{5^2\sqrt[10]{5^3\sqrt[13]{\cdots}}}} & \small \color{#3D99F6} \text{Since }\sqrt[x+1]{n\sqrt[2x+1]{n^2\sqrt[3x+1]{n^3\sqrt[4x+1]{\cdots}}}} = \sqrt[x]n \text{ (see reference)} \\ & = \sqrt[3] 5 \approx 1.7010 \end{aligned}

P 1 P 2 0.18 \implies P_1 - P_2 \approx \boxed{0.18} .


Reference: A Nested Radical

Sir, please tell me how was that note and if I need to make some changes

Mrigank Shekhar Pathak - 3 years, 6 months ago

Log in to reply

I find it not fully explained. I can get the first equation. But I was trying to figure out how to get from first equation to the second. You should write it like a wiki. Centralize the equation using square bracket \ [ \ ] (of course no space between \ and [ and ]. Try not to use too many colors making fancy and not serious. I use color in my solution because I want the solution to be as short as possible. Note on the other hand can be as long as we want. The important thing is make them clear.

Chew-Seong Cheong - 3 years, 6 months ago

Log in to reply

Thank you , sir i will be making the changes as soon as possible

Mrigank Shekhar Pathak - 3 years, 6 months ago

Log in to reply

@Mrigank Shekhar Pathak Where did you get the reference from?. I can edit your note because I am a modulator.

Chew-Seong Cheong - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...