You're just a click away

30 72 87 x ( m o d 11 ) \large {30}^{{72}^{87}} \equiv \ x \pmod {11}

What is x x ?


Do you like challenging your brain?. Enter the world where Calculators will not help
4 2 6 5 3 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 18, 2016

3 0 7 2 87 3 0 7 2 87 mod 10 (mod 11) By Euler’s Theorem, since gcd ( 30 , 11 ) = 1 ; ϕ ( 11 ) = 10 3 0 2 87 mod 10 (mod 11) 2 n mod 10 = { 2 n mod 4 if 4 ∤ n 6 if 4 n it is cyclical 3 0 2 3 (mod 11) 3 0 8 (mod 11) ( 33 3 ) 8 (mod 11) ( 3 ) 8 3 8 ( 3 2 ) 4 ( 2 ) 4 16 5 (mod 11) \begin{aligned} 30^{72^{87}} & \equiv 30^{72^{87} \color{#3D99F6}{\text{ mod 10}}} \text{ (mod 11)} \quad \quad \small \color{#3D99F6}{\text{By Euler's Theorem, since } \gcd(30,11)=1; \ \phi(11) = 10} \\ & \equiv 30^{\color{#3D99F6}{2^{87} \text{ mod 10}}} \text{ (mod 11)} \quad \quad \small \color{#3D99F6}{2^n \text{ mod }10 = \begin{cases} 2^{n \text{ mod }4 } & \text{if }4 \not{|} \ n \\ 6 & \text{if } 4 \ | \ n \end{cases} - \text{ it is cyclical}} \\ & \equiv 30^{\color{#3D99F6}{2^3}} \text{ (mod 11)} \\ & \equiv 30^8 \text{ (mod 11)} \\ & \equiv (33-3)^8 \text{ (mod 11)} \\ & \equiv (-3)^8 \equiv 3^8 \equiv \left(3^2\right)^4 \equiv \left(-2\right)^4 \equiv 16 \equiv \boxed{5} \text{ (mod 11)} \end{aligned}

Mehul Arora
Jun 17, 2016

Disclaimer: My solution involves Bashing.

Observe that, since 30 and 11 are coprime, we can use Euler's theorem.

3 0 ϕ ( 11 ) 1 ( m o d 11 ) \therefore 30^{\phi (11)} \equiv 1 (\mod 11)

3 0 10 1 ( m o d 11 ) \Rightarrow 30^{10} \equiv 1 (\mod 11)

3 0 7 2 87 3 0 7 2 87 ( m o d 10 ) ( m o d 11 ) \therefore 30^{72^{87}} \equiv 30^{72^{87} (\mod 10)} (\mod 11)

Applying Euler's theorem again,

7 2 87 7 2 7 2 7 8 ( m o d 10 ) 72^{87} \equiv 72^7 \equiv 2^7 \equiv 8 (\mod 10)

3 0 7 2 87 3 0 8 ( m o d 11 ) \Rightarrow 30^{72^{87}} \equiv 30^8 (\mod 11)

30 1 ( m o d 11 ) 30 \equiv 1 (\mod 11)

3 0 2 9 ( m o d 11 ) 30^2 \equiv 9 (\mod 11)

3 0 3 6 ( m o d 11 ) 30^3 \equiv 6 (\mod 11)

3 0 4 4 ( m o d 11 ) 30^4 \equiv 4 (\mod 11)

3 0 5 10 ( m o d 11 ) 30^5 \equiv 10 (\mod 11)

3 0 6 3 ( m o d 11 ) 30^6 \equiv 3 (\mod 11)

3 0 7 2 ( m o d 11 ) 30^7 \equiv 2 (\mod 11)

3 0 8 5 ( m o d 11 ) 30^8 \equiv \boxed{5} (\mod 11)

3 0 7 2 87 5 ( m o d 11 ) \therefore 30^{72^{87}} \equiv 5(\mod 11)

And we're done.

Hi Abhay. Seems like two of the problems in your set, namely "This is weird" and "Still I see no numbers" have been deleted. Kindly remove them from the set, or it misleads the viewers trying to attempt them. Thanks!

Mehul Arora - 4 years, 12 months ago

Log in to reply

Mehul, thanks a lot, I have edited my set.

Abhay Tiwari - 4 years, 12 months ago

Log in to reply

You're welcome!

Seems like people don't like bash solutions :P

Mehul Arora - 4 years, 12 months ago

Log in to reply

@Mehul Arora No, your solution is good.(+1) :).

Abhay Tiwari - 4 years, 12 months ago

Log in to reply

@Abhay Tiwari It gets the answer, but it's not as elegant as Chew sir's ;)

Mehul Arora - 4 years, 12 months ago

Google has several different solutions for this same problem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...