Unknowns are Unknowns! (Part 2)

Algebra Level 3

{ 2 x 2 + 2 y 2 = 5 x y x y x + y = a b \large \begin{cases} 2x^2 + 2y^2 = 5xy \\ \dfrac{x-y}{x+y} = \dfrac{a}{b} \end{cases}

Real numbers x x , y y , a a , and b b , where a a and b b are positive coprime integers, satisfy the system of equations above. Find a × b a + b ÷ a a \times b - a + b \div a .


Try another problem on my set Let's Practice


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Apr 16, 2017

x y x + y = a b Squaring both sides x 2 2 x y + y 2 x 2 + 2 x y + y 2 = a 2 b 2 Multiplying up and down of LHS by 2 2 x 2 4 x y + 2 y 2 2 x 2 + 4 x y + 2 y 2 = a 2 b 2 Note that 2 x 2 + 2 y 2 = 5 x y 5 x y 4 x y 5 x y + 4 x y = a 2 b 2 a 2 b 2 = 1 9 a b = 1 3 \begin{aligned} \frac {x-y}{x+y} & = \frac ab & \small \color{#3D99F6} \text{Squaring both sides} \\ \frac {x^2-2xy+y^2}{x^2+2xy+y^2} & = \frac {a^2}{b^2} & \small \color{#3D99F6} \text{Multiplying up and down of LHS by }2 \\ \frac {{\color{#3D99F6}2x^2}-4xy+{\color{#3D99F6}2y^2}}{{\color{#3D99F6}2x^2}+4xy+{\color{#3D99F6}2y^2}} & = \frac {a^2}{b^2} & \small \color{#3D99F6} \text{Note that } 2x^2+2y^2 = 5xy \\ \frac {{\color{#3D99F6}5xy}-4xy}{{\color{#3D99F6}5xy}+4xy} & = \frac {a^2}{b^2} \\ \implies \frac {a^2}{b^2} & = \frac 19 \\ \frac ab & = \frac 13 \end{aligned}

a × b a + b ÷ a = 1 × 3 1 + 3 ÷ 1 = 5 \implies a \times b - a + b \div a = 1 \times 3 - 1 + 3 \div 1 = \boxed{5}

Wow! Great solutionx sir.. Much better than mine..

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

What do you think about this set?

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

@Fidel Simanjuntak Good set of problems. I will try to go through all.

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

@Chew-Seong Cheong Did you finish all these problem in this set?

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

@Fidel Simanjuntak Nope, not yet

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

@Chew-Seong Cheong How many more?

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

@Fidel Simanjuntak Many more. I like to do those without solution so that I can post solution.

Chew-Seong Cheong - 4 years, 1 month ago

If y = 0 y = 0 then from the first equation x = 0 x = 0 , which would make ( x y ) / ( x + y ) (x - y)/(x + y) indeterminate. So with y 0 y \ne 0 we can divide the first equation through by y 2 y^{2} to find that

2 ( x y ) 2 + 2 = 5 ( x y ) 2 ( x y ) 2 5 ( x y ) + 2 = 0 ( 2 x y 1 ) ( x y 2 ) = 0 2\left(\dfrac{x}{y}\right)^{2} + 2 = 5\left(\dfrac{x}{y}\right) \Longrightarrow 2\left(\dfrac{x}{y}\right)^{2} - 5\left(\dfrac{x}{y}\right) + 2 = 0 \Longrightarrow \left(2\dfrac{x}{y} - 1\right)\left(\dfrac{x}{y} - 2\right) = 0 .

So either x y = 1 2 \dfrac{x}{y} = \dfrac{1}{2} or x y = 2 \dfrac{x}{y} = 2 . Now the second equation can be written as x y 1 x y + 1 = a b \dfrac{\dfrac{x}{y} - 1}{\dfrac{x}{y} + 1} = \dfrac{a}{b} ,

so if we want a , b a,b to be positive we need to choose x y = 2 \dfrac{x}{y} = 2 , in which case a = 1 , b = 3 a = 1, b = 3 .

Thus a × b a + b ÷ a = 1 × 3 1 + 3 ÷ 1 = 5 a \times b - a + b \div a = 1 \times 3 - 1 + 3 \div 1 = \boxed{5} .

Fidel Simanjuntak
Apr 16, 2017

2 x 2 + 2 y 2 = 5 x y 2 ( x 2 + y 2 ) = 5 x y x 2 + y 2 = 5 2 x y \begin{aligned} 2x^2 + 2y^2 & = 5xy \\ 2(x^2 + y^2) & = 5xy \\ x^2 + y^2 & = \dfrac{5}{2}xy \end{aligned}

Note that ( x y ) 2 = x 2 + y 2 2 x y ( x y ) 2 = 5 2 x y 2 x y = 1 2 x y (x-y)^2 = x^2 + y^2 -2xy \rightarrow (x-y)^2 = \dfrac{5}{2}xy - 2xy = \dfrac{1}{2}xy .

Also, ( x + y ) 2 = x 2 + y 2 + 2 x y ( x + y ) 2 = 5 2 x y + 2 x y = 9 2 x y (x+y)^2 = x^2 + y^2 + 2xy \rightarrow (x+y)^2 = \dfrac{5}{2}xy + 2xy = \dfrac{9}{2}xy .

Now,

x y x + y = ( x y ) 2 ( x + y ) 2 = 1 2 x y 9 2 x y = 1 9 = 1 3 = a b \begin{aligned} \dfrac{x-y}{x+y} = \sqrt{ \dfrac{(x-y)^2}{(x+y)^2}} & = \sqrt{ \dfrac{ \dfrac{1}{2}xy}{ \dfrac{9}{2}xy}} \\ & = \sqrt{ \dfrac{1}{9}} = \dfrac{1}{3} = \dfrac{a}{b} \end{aligned}

Hence a × b a + b : a = 3 1 + 3 = 5 a \times b - a + b : a = 3 - 1 + 3 = 5 .

J D
Apr 17, 2017

You could just find a pair of (x,y) that works. I found that x=4, y=2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...