Using symmetry (advanced)

Calculus Level 3

0 π / 2 ln ( sin ( x ) ) d x = ? \large \int_{0}^{\pi/2} \ln(\sin(x))dx = ?

Hint: 0 π / 2 ln ( sin ( x ) ) d x = 0 π / 2 ln ( cos ( x ) ) d x \displaystyle \int_{0}^{\pi/2} \ln(\sin(x))dx =\int_{0}^{\pi/2} \ln(\cos(x))dx

π ln ( 2 ) 2 -\frac {\pi\ln (2)}2 π 2 ln ( 3 ) 8 -\frac {\pi^2 \ln (3)}8 0 π ln ( 2 ) -\pi \ln(2)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 π 2 ln ( sin x ) d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( ln ( sin x ) + ln ( cos x ) ) d x = 1 2 0 π 2 ln ( sin x cos x ) d x = 1 2 0 π 2 ln ( 1 2 sin ( 2 x ) ) d x = 1 2 0 π 2 ln ( sin ( 2 x ) ) d x 1 2 0 π 2 ln 2 d x Let u = 2 x d u = 2 d x = 1 4 0 π ln ( sin u ) d u π ln 2 4 sin u is symmetrical about π 2 = 1 2 0 π 2 ln ( sin u ) d u π ln 2 4 = 1 2 I π ln 2 4 = π ln 2 2 \begin{aligned} I & = \int_0^\frac \pi 2 \ln (\sin x) \ dx & \small \color{grey} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x)\ dx \\ & = \frac 12 \int_0^\frac \pi 2 (\ln (\sin x) + \ln (\cos x))\ dx \\ & = \frac 12 \int_0^\frac \pi 2 \ln (\sin x \cos x)\ dx \\ & = \frac 12 \int_0^\frac \pi 2 \ln \left(\frac 12 \sin (2x) \right) \ dx \\ & = {\color{#3D99F6} \frac 12 \int_0^\frac \pi 2 \ln (\sin (2x))\ dx} - \frac 12 \int_0^\frac \pi 2 \ln 2 \ dx & \small \color{#3D99F6} \text{Let } u = 2x \implies du = 2 \ dx \\ & = {\color{#3D99F6} \frac 14 \int_0^\pi \ln (\sin u)\ du} - \frac {\pi\ln 2}4 & \small \color{#3D99F6} \sin u \text{ is symmetrical about }\frac \pi 2 \\ & = {\color{#3D99F6} \frac 12 \int_0^\frac \pi 2 \ln (\sin u)\ du} - \frac {\pi\ln 2}4 \\ & = {\color{#3D99F6} \frac 12 I} - \frac {\pi\ln 2}4 \\ & = \boxed{-\dfrac {\pi \ln 2}2} \end{aligned}

Jouko Virtanen
Apr 8, 2018

Let's start with showing that the hint is correct. Since sin ( x ) \sin(x) = cos ( π / 2 x ) \cos(\pi/2-x) for every x between 0 and π / 2 \pi/2 there is a point between 0 and π / 2 \pi/2 for which sin ( x ) \sin(x) has an equal cosine. Thus, the integrals are equal.

Using the hint we see that

0 π / 2 ln ( sin ( x ) ) d x = 1 2 0 π / 2 ln ( sin ( x ) ) + ln ( cos ( x ) ) d x = \displaystyle\int_{0}^{\pi/2} \ln(\sin(x))dx=\frac{1}{2}\int_{0}^{\pi/2} \ln(\sin(x))+\ln(\cos(x))dx=

1 2 0 π / 2 ln ( sin ( x ) cos ( x ) ) d x \displaystyle\frac {1}{2}\int_{0}^{\pi/2} \ln(\sin(x)\cos(x))dx

Now we use the fact that sin ( x ) cos ( x ) = 1 2 ( sin 2 x ) \sin(x)\cos(x)=\frac{1}{2}(\sin2x) to write

1 2 0 π / 2 ln ( 1 2 sin ( 2 x ) ) d x = \displaystyle\frac{1}{2}\int_{0}^{\pi/2} \ln(\frac{1}{2} \sin(2x))dx=

1 2 0 π / 2 ln ( sin ( 2 x ) ) d x + 1 2 0 π / 2 ln ( 1 / 2 ) = \displaystyle\frac{1}{2}\int_{0}^{\pi/2} \ln(\sin(2x))dx+\frac{1}{2}\int_{0}^{\pi/2} \ln(1/2)=

1 2 0 π / 2 ln ( sin ( 2 x ) ) d x + π ln ( 1 / 2 ) 4 \displaystyle\frac{1}{2}\int_{0}^{\pi/2} \ln(\sin(2x))dx+\frac {\pi\ln(1/2)}{4}

Now we can do u substitution. u=2x, du=2dx, 1/2du=dx

1 4 0 π ln ( sin ( u ) ) d u + π / 4 ln ( 1 / 2 ) \displaystyle\frac{1}{4}\int_{0}^{\pi} \ln(\sin(u))du+\pi/4 \ln(1/2)

By another use of symmetry

0 π / 2 ln ( sin ( u ) ) d u = π / 2 π ln ( sin ( u ) ) d u \displaystyle\int_{0}^{\pi/2} \ln(\sin(u))du=\int_{\pi/2}^{\pi} \ln(\sin(u))du

0 π ln ( sin ( u ) ) d u = 2 0 π / 2 ln ( sin ( u ) ) d u \displaystyle\int_{0}^{\pi} \ln(\sin(u))du=2\int_{0}^{\pi/2} \ln(\sin(u))du

So we can write

1 2 0 π / 2 ln ( sin ( u ) ) d u + π ln ( 1 / 2 ) 4 \displaystyle\frac{1}{2}\int_{0}^{\pi/2} \ln(\sin(u))du+\frac {\pi\ln(1/2)}{4}

1 2 0 π / 2 ln ( sin ( x ) ) d x + π ln ( 1 / 2 ) 4 = 0 π / 2 ln ( sin ( x ) ) d x \displaystyle\frac{1}{2}\int_{0}^{\pi/2} \ln(\sin(x))dx+\frac {\pi\ln(1/2)}{4}=\int_{0}^{\pi/2} \ln(\sin(x))dx

π ln ( 1 / 2 ) 4 = 1 2 0 π / 2 ln ( sin ( x ) ) d x \displaystyle\frac {\pi\ln(1/2)}{4}=\frac{1}{2}\int_{0}^{\pi/2} \ln(\sin(x))dx

π ln ( 1 / 2 ) 2 = 0 π / 2 ln ( sin ( x ) ) d x \displaystyle\frac {\pi\ln(1/2)}{2}=\int_{0}^{\pi/2} \ln(\sin(x))dx

π ln ( 2 ) 2 = 0 π / 2 ln ( sin ( x ) ) d x \displaystyle-\frac {\pi\ln(2)}{2}=\int_{0}^{\pi/2} \ln(\sin(x))dx

Like \int ( \int ) and \pi ( π \pi ), we have to put \ in front \ln ( ln \ln ), \sin ( sin \sin ) and \cos ( cos \cos ). Notice that the function symbols are not in italic which is for variables and constants. Also note the ln x ( l n x ln x ), sin x ( s i n x sin x ) and cos x ( c o s x cos x ) have the function and variable stick together even if you enter a space in between. But \ln x ( ln x \ln x ), \sin x ( sin x \sin x ) and \cos x ( cos x \cos x ), there is a space in between.

You can see the LaTex codes by placing your mouse cursor on top on the formulas. Or click the " \cdots More" pull-down menu below the answer section and select "Toggle LaTex".

Chew-Seong Cheong - 3 years, 2 months ago

Log in to reply

I have improved the LaTex. Thanks.

Jouko Virtanen - 3 years, 2 months ago

Log in to reply

I noticed. To make the \int proper size add \displaystyle in front as in \displaystyle \int . But if you are using square brackets \ [ \ ] (no space between backslash and brackets), you don't need to use \displaystyle as in \int

Chew-Seong Cheong - 3 years, 2 months ago

Log in to reply

@Chew-Seong Cheong I now use \displaystyle. Thanks for the help.

Jouko Virtanen - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...