Vieta’s Formula

Algebra Level 3

If quadratic equation x 2 + 3 x + 1 = 0 x^2 + 3x + 1 = 0 has real roots x 1 x_1 and x 2 x_2 , find ( x 1 2 + 2 x 1 ) ( x 2 2 + 4 x 2 + 2 ) \left({x_1}^2+2x_1\right)\left({x_2}^2+4 x_2+2\right) .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Edward Christian
Aug 4, 2020

It’s easy to get Δ = b 2 4 a c = 3 2 4 × 1 × 1 > 0 \Delta=b^2-4ac=3^2-4 \times 1 \times 1>0 . Obviously, x 1 x 2 x_1 \neq x_2 . You can certainly solve the equation, but we can substitute x x by x 1 x_1 and x 2 x_2 . x 2 + 3 x + 1 = 0. x 1 2 + 3 x 1 + 1 = 0. x 1 2 + 2 x 1 = ( x 1 + 1 ) . x 2 + 3 x + 1 = 0. x 2 2 + 3 x 2 + 1 = 0. x 2 2 + 4 x 2 + 2 = x 2 + 1 \begin{aligned} \because x^2+3x+1 &=0. \\ \therefore {x_1}^2+3 x_1 +1 &=0. \\ \therefore {x_1}^2 + 2 x_1 &=-(x_1 + 1). \\ \because x^2+3x+1 &=0. \\ \therefore{x_2}^2+3 x_2 +1 &=0. \\ \therefore{x_2}^2 + 4 x_2 + 2 &=x_2 + 1 \end{aligned} a = 1 , b = 3 , c = 1 \because a=1, b=3, c=1 ( x 1 2 + 2 x 1 ) ( x 2 2 + 4 x 2 + 2 ) = [ ( x 1 + 1 ) ( x 2 + 1 ) ] . = [ x 1 x 2 + ( x 1 + x 2 ) + 1 ] . = ( c a b a + 1 ) . = ( 1 1 3 1 + 1 ) . = ( 1 3 + 1 ) . = 1 \begin{aligned} \therefore \left( {x_1}^2 +2 x_1 \right)\left( {x_2}^2 +4 x_2 + 2\right) &=-\left[(x_1 + 1)(x_2 + 1)\right]. \\ &=-\left[ x_1 x_2 + ( x_1 + x_2 ) + 1 \right]. \\ &=-\left( \frac{c}{a}-\frac{b}{a} +1 \right). \\ &=-\left( \frac{1}{1}-\frac{3}{1}+ 1 \right). \\ &=-(1-3+1). \\ &=1 \end{aligned} ( x 1 2 + 2 x 1 ) ( x 2 2 + 4 x 2 + 2 ) = 1. \therefore\left( {x_1}^2 +2 x_1 \right)\left( {x_2}^2 +4 x_2 + 2\right)=1.

X = ( x 1 2 + 2 x 1 ) ( x 2 2 + 4 x 2 + 2 ) = ( x 1 2 + 3 x 1 + 1 x 1 1 ) ( x 2 2 + 3 x 2 + 1 + x 2 + 1 ) Note that x 2 + 3 x + 1 = 0 = ( 0 x 1 1 ) ( 0 + x 2 + 1 ) = ( x 1 + 1 ) ( x 2 + 1 ) = ( x 1 x 2 + x 1 + x 2 + 1 ) By Vieta’s formula x 1 x 2 = 1 and x 1 + x 2 = 3 = ( 1 3 + 1 ) = 1 \begin{aligned} X & = (x_1^2 + 2x_1)(x_2^2 + 4x_2 + 2) \\ & = (\blue{x_1^2 + 3x_1+1} - x_1 -1)(\blue{x_2^2+3x_2+1} + x_2 + 1) & \blue{\text{Note that }x^2+3x+1 = 0} \\ & = (\blue{0} - x_1 -1)(\blue{0} + x_2 + 1) \\ & = -(x_1+1)(x_2+1) \\ & = - (x_1x_2 + x_1 + x_2 +1) & \small \blue{\text{By Vieta's formula }x_1x_2 = 1 \text{ and }x_1+x_2 = - 3} \\ & = - (1-3+1) = \boxed 1 \end{aligned}


Reference: Vieta's formula

Same method, although if we write f ( x ) = x 2 + 3 x + 1 = ( x x 1 ) ( x x 2 ) f(x)=x^2+3x+1=(x-x_1)(x-x_2) then ( x 1 + 1 ) ( x 2 + 1 ) = f ( 1 ) = 1 -(x_1+1)(x_2+1)=-f(-1)=1 is slightly faster.

Chris Lewis - 10 months, 1 week ago

Log in to reply

Upvote my solution if you like it.

Chew-Seong Cheong - 10 months, 1 week ago

Log in to reply

I did, and I did.

Chris Lewis - 10 months, 1 week ago

Log in to reply

@Chris Lewis Thanks and thanks.

Chew-Seong Cheong - 10 months, 1 week ago

We have x 1 + x 2 = 3 , x 1 x 2 = 1 x_1+x_2=-3,x_1x_2=1

Expanding the given expression and using the relations we get the given expression as

2 x 1 2 + 8 x 1 + 9 + 2 x 2 = 2 ( x 1 2 + 3 x 1 + 1 ) + 2 x 1 + 2 x 2 + 7 2x_1^2+8x_1+9+2x_2=2(x_1^2+3x_1+1)+2x_1+2x_2+7

= 2 ( x 1 + x 2 ) + 7 = 2 ( 3 ) + 7 = 1 =2(x_1+x_2)+7=2(-3)+7=\boxed 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...