Vieta's is fun, so I'll post another problem!

Algebra Level 5

x 3 7 x 2 + 5 x + 2 = 0 x^3-7x^2+5x+2=0

Given that a a , b b and c c are the roots of the above equation, find the value of cyc a 4 b c + 1 \displaystyle \sum_{\text{cyc}} \dfrac{a^4}{bc+1} .


Too hard? Here are some slightly easier problems .

Too easy? Try this then.

Give this problem a solution which is more elegant, faster or simpler than mine!


The answer is 2095.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jul 8, 2016

Relevant wiki: Vieta's Formula Problem Solving - Intermediate

*A solution without Newton sums

Using Vieta's : cyc a = 7 , cyc a b = 5 , a b c = 2 \small{\displaystyle\sum_{\text{cyc}}a=7,\displaystyle\sum_{\text{cyc}}ab=5,abc=-2} T = cyc a 5 a b c 2 + a = cyc a 5 a 2 \large \mathcal T=\displaystyle \sum_{\text{cyc}} \dfrac{a^5}{\underbrace{abc}_{-2}+a}=\displaystyle \sum_{\text{cyc}}\dfrac {a^5}{a-2}

Now, a 5 = ( a 2 ) ( a 4 + 2 a 3 + 4 a 2 + 8 a + 16 ) + 32 \small{a^5=(a-2)(a^4+2a^3+4a^2+8a+16)+\color{#20A900}{32}} so that: T = cyc 32 a 2 + cyc ( a 4 + 2 a 3 + 4 a 2 + 8 a + 16 ) \mathcal T= \displaystyle \sum_{\text{cyc}}\dfrac{\color{#20A900}{32}}{a-2}+\displaystyle \sum_{\text{cyc}}( \color{#007fff}{a^4}+2\color{magenta}{a^3}+4a^2+8a+16)

Now, let's manipulate the original equation:

a 3 = 7 a 2 5 a 2 , \color{magenta}{a^3=7a^2-5a-2},~ multiply both sides by a a ,

a 4 = 7 a 3 5 a 2 2 a = 44 a 2 37 a 14 \implies \color{#007fff}{a^4}=7\color{magenta}{a^3}-5a^2-2a=\color{#007fff}{44a^2-37a-14}

Substitute a 3 a^3 and a 4 a^4 in second sum of T \mathcal T while to calculate cyc 1 a 2 \displaystyle \sum_{\text{cyc}}\dfrac{1}{a-2} put x = 2 x=2 in f ( x ) f ( x ) = cyc 1 a x \dfrac{-f'(x)}{f(x)}=\displaystyle \sum_{\text{cyc}}\dfrac{1}{a-x} (See my soln here )to obtain cyc 1 a 2 = 11 8 \displaystyle \sum_{\text{cyc}}\dfrac{1}{a-2}=\dfrac{-11}{8} so that cyc 32 a 2 = 44 \small{\displaystyle \sum_{\text{cyc}}\dfrac{\color{#20A900}{32}}{a-2}=-44} .

T = 44 + cyc ( 62 a 2 39 a 2 ) \large\therefore\mathcal T=-44+ \displaystyle \sum_{\text{cyc}}\left(62a^2-39a-2\right)

= 44 + [ 62 ( ( 7 ) 2 2 × 5 ) 39 ( 7 ) 2 × 3 ] =-44+\left[62((7)^2-2\times 5)-39(7)-2\times 3\right]

= 2095 \Large =\boxed{\color{#0C6AC7}{2095}}

Wow! Fantastic solution!

P.S. I was waiting to see how you'd solve this

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Soon this would be level 5.. :-)... BTW I was busy evaluating cyc a 5 b c + 1 \displaystyle \sum_{\text{cyc}} \dfrac{a^5}{bc+1} . Though calculations are a bit nasty but the sum is still evluatable.. :-p

Rishabh Jain - 4 years, 11 months ago

Log in to reply

Should I be preparing for cyc a 6 b c + 1 \displaystyle \sum_{\text{cyc}} \dfrac{a^6}{bc+1} ?

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Lol probably then it would never end... :-) chances are low that I'd post that question... So maybe you could post both only If you wish!! :-)

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain I think I'll only post a 6 a^6 if you posted a 5 a^5 . Otherwise, we'll just end it here :)

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh So probably this is the end... It was fun solving this series.. :-)

Rishabh Jain - 4 years, 11 months ago

@Hung Woei Neoh Why don't people solve these.... Only 3 people got it right .. !!!

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain Give it a few days...sometimes, you'd be surprised that after one night, an additional 200 people viewed your question

Besides, you should take a look at your two problems. I'm guessing that the percentage of attempts is below 25%

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Obviously I'm talking about these problems as a whole. :-)

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain Well, there are a few reasons for this, and I'm sure you know the reasons

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh No... Can you please throw some light ? ... if you want to !

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain (Throws a lightbulb, a battery and some wires)

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh XD ....Though I cannot find a way to get some light lol ? So ..

Rishabh Jain - 4 years, 11 months ago
Hung Woei Neoh
Jul 7, 2016

Relevant wiki: Newton's Identities

A solution that uses Newton's sums:

From Vieta's formula, we get

a + b + c = 7 a b + a c + b c = 5 a b c = 2 \color{#3D99F6}{a+b+c = 7}\\ \color{#D61F06}{ab+ac+bc = 5}\\ \color{#EC7300}{abc = -2}

cyc a 4 b c + 1 = cyc a 5 a b c + a = cyc a 5 a 2 = a 5 a 2 + b 5 b 2 + c 5 c 2 = a 5 ( b 2 ) ( c 2 ) + b 5 ( a 2 ) ( c 2 ) + c 5 ( a 2 ) ( b 2 ) ( a 2 ) ( b 2 ) ( c 2 ) = a 5 ( b c 2 ( b + c ) + 4 ) + b 5 ( a c 2 ( a + c ) + 4 ) + c 5 ( a b 2 ( a + b ) + 4 ) a b c 2 ( a b + a c + b c ) + 4 ( a + b + c ) 8 = a 5 ( 2 a 2 ( 7 a ) + 4 ) + b 5 ( 2 b 2 ( 7 b ) + 4 ) + c 5 ( 2 c 2 ( 7 c ) + 4 ) 2 2 ( 5 ) + 4 ( 7 ) 8 = a 5 ( 2 a 10 + 2 a ) + b 5 ( 2 b 10 + 2 b ) + c 5 ( 2 c 10 + 2 c ) 2 10 + 28 8 = 2 a 4 10 a 5 + 2 a 6 2 b 4 10 b 5 + 2 b 6 2 c 4 10 c 5 + 2 c 6 8 = 2 ( a 6 + b 6 + c 6 ) 10 ( a 5 + b 5 + c 5 ) 2 ( a 4 + b 4 + c 4 ) 8 \displaystyle \sum_{\text{cyc}} \dfrac{a^4}{bc+1}\\ =\displaystyle \sum_{\text{cyc}} \dfrac{a^5}{\color{#EC7300}{abc}+a}\\ =\displaystyle \sum_{\text{cyc}} \dfrac{a^5}{a-2}\\ =\dfrac{a^5}{a-2}+\dfrac{b^5}{b-2}+\dfrac{c^5}{c-2}\\ =\dfrac{a^5(b-2)(c-2) + b^5(a-2)(c-2)+c^5(a-2)(b-2)}{(a-2)(b-2)(c-2)}\\ =\dfrac{a^5\big(\color{#EC7300}{bc} - 2(\color{#3D99F6}{b+c})+4\big)+b^5\big(\color{#EC7300}{ac} - 2(\color{#3D99F6}{a+c})+4\big)+c^5\big(\color{#EC7300}{ab} - 2(\color{#3D99F6}{a+b})+4\big)}{\color{#EC7300}{abc} -2(\color{#D61F06}{ab+ac+bc})+4(\color{#3D99F6}{a+b+c}) -8}\\ =\dfrac{a^5\big(\color{#EC7300}{\frac{-2}{a}} - 2(\color{#3D99F6}{7-a})+4\big)+b^5\big(\color{#EC7300}{\frac{-2}{b}} - 2(\color{#3D99F6}{7-b})+4\big)+c^5\big(\color{#EC7300}{\frac{-2}{c}} - 2(\color{#3D99F6}{7-c})+4\big)}{\color{#EC7300}{-2} -2(\color{#D61F06}{5})+4(\color{#3D99F6}{7}) -8}\\ =\dfrac{a^5(\frac{-2}{a}-10+2a)+b^5(\frac{-2}{b}-10+2b)+c^5(\frac{-2}{c}-10+2c)}{-2-10+28 -8}\\ =\dfrac{-2a^4-10a^5+2a^6-2b^4-10b^5+2b^6-2c^4-10c^5+2c^6}{8}\\ =\dfrac{2(\color{#624F41}{a^6+b^6+c^6})-10(\color{teal}{a^5+b^5+c^5})-2(\color{magenta}{a^4+b^4+c^4})}{8}

Now, we apply Newton's sums:

a + b + c = 7 a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + a c + b c ) = ( 7 ) 2 2 ( 5 ) = 39 a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) ( a b + a c + b c ) ( a + b + c ) + 3 ( a b c ) = ( 7 ) ( 39 ) ( 5 ) ( 7 ) + 3 ( 2 ) = 232 a 4 + b 4 + c 4 = ( a + b + c ) ( a 3 + b 3 + c 3 ) ( a b + a c + b c ) ( a 2 + b 2 + c 2 ) + a b c ( a + b + c ) = ( 7 ) ( 232 ) ( 5 ) ( 39 ) + ( 2 ) ( 7 ) = 1415 a 5 + b 5 + c 5 = ( a + b + c ) ( a 4 + b 4 + c 4 ) ( a b + a c + b c ) ( a 3 + b 3 + c 3 ) + a b c ( a 2 + b 2 + c 2 ) = ( 7 ) ( 1415 ) ( 5 ) ( 232 ) + ( 2 ) ( 39 ) = 8667 a 6 + b 6 + c 6 = ( a + b + c ) ( a 5 + b 5 + c 5 ) ( a b + a c + b c ) ( a 4 + b 4 + c 4 ) + a b c ( a 3 + b 3 + c 3 ) = ( 7 ) ( 8667 ) ( 5 ) ( 1415 ) + ( 2 ) ( 232 ) = 53130 \color{#3D99F6}{a+b+c = 7}\\ \color{#20A900}{a^2+b^2+c^2} = (\color{#3D99F6}{a+b+c})^2 - 2(\color{#D61F06}{ab+ac+bc}) = (\color{#3D99F6}{7})^2 - 2(\color{#D61F06}{5}) = \color{#20A900}{39}\\ \color{#69047E}{a^3+b^3+c^3} = (\color{#3D99F6}{a+b+c})(\color{#20A900}{a^2+b^2+c^2}) - (\color{#D61F06}{ab+ac+bc})(\color{#3D99F6}{a+b+c}) + 3(\color{#EC7300}{abc}) = (\color{#3D99F6}{7})(\color{#20A900}{39}) - (\color{#D61F06}{5})(\color{#3D99F6}{7}) + 3(\color{#EC7300}{-2}) =\color{#69047E}{232}\\ \color{magenta}{a^4+b^4+c^4} = (\color{#3D99F6}{a+b+c})(\color{#69047E}{a^3+b^3+c^3}) - (\color{#D61F06}{ab+ac+bc})(\color{#20A900}{a^2+b^2+c^2}) + \color{#EC7300}{abc}(\color{#3D99F6}{a+b+c})\\ = (\color{#3D99F6}{7})(\color{#69047E}{232}) - (\color{#D61F06}{5})(\color{#20A900}{39}) + (\color{#EC7300}{-2})(\color{#3D99F6}{7}) =\color{magenta}{1415}\\ \color{teal}{a^5+b^5+c^5}= (\color{#3D99F6}{a+b+c})(\color{magenta}{a^4+b^4+c^4}) - (\color{#D61F06}{ab+ac+bc})(\color{#69047E}{a^3+b^3+c^3}) + \color{#EC7300}{abc}(\color{#20A900}{a^2+b^2+c^2})\\ = (\color{#3D99F6}{7})(\color{magenta}{1415}) - (\color{#D61F06}{5})(\color{#69047E}{232}) + (\color{#EC7300}{-2})(\color{#20A900}{39}) =\color{teal}{8667}\\ \color{#624F41}{a^6+b^6+c^6}= (\color{#3D99F6}{a+b+c})(\color{teal}{a^5+b^5+c^5}) - (\color{#D61F06}{ab+ac+bc})(\color{magenta}{a^4+b^4+c^4}) + \color{#EC7300}{abc}(\color{#69047E}{a^3+b^3+c^3})\\ = (\color{#3D99F6}{7})(\color{teal}{8667}) - (\color{#D61F06}{5})(\color{magenta}{1415}) + (\color{#EC7300}{-2})(\color{#69047E}{232})=\color{#624F41}{53130}

Substitute these values in:

2 ( a 6 + b 6 + c 6 ) 10 ( a 5 + b 5 + c 5 ) 2 ( a 4 + b 4 + c 4 ) 8 = 2 ( 53130 ) 10 ( 8667 ) 2 ( 1415 ) 8 = 106260 86670 2830 8 = 16760 8 = 2095 \dfrac{2(\color{#624F41}{a^6+b^6+c^6})-10(\color{teal}{a^5+b^5+c^5})-2(\color{magenta}{a^4+b^4+c^4})}{8}\\ =\dfrac{2(\color{#624F41}{53130})-10(\color{teal}{8667})-2(\color{magenta}{1415})}{8}\\ =\dfrac{106260-86670-2830}{8}\\ =\dfrac{16760}{8}\\ =\boxed{2095}

U s i n g V i e t a s F o r m u l a f o r f ( x ) = x 3 7 x 2 + 5 x + 2 = 0 , f ( a ) = a 3 7 a 2 + 5 a + 2 = 0. c y c a = 7 , c y c a b = 5 , a b c = 2 , w i t h u s u a l m a n i p u l a t i o n c y c a = 7 2 2 5 = 39. a 0 , s o a 3 = 7 a 2 5 a 2 , a 2 = 7 a 5 2 a . a 3 = 7 ( 7 a 5 2 a ) 5 a 2 = 44 a 37 14 a a 4 = 44 a 2 37 a 14 . c y c a 4 b c + 1 = c y c a 5 a b c + a = c y c a 5 a 2 = c y c a 5 ( b 2 ) ( c 2 ) ( a 2 ) ( b 2 ) ( c 2 ) . ( b 2 ) ( c 2 ) = b c 2 ( b + c ) + 4 = 2 a 2 ( 7 a ) + 4 = 2 a 10 2 a = 2 ( a 5 1 a ) . a 5 ( b 2 ) ( c 2 ) = a 4 a 2 ( a 5 1 a ) = ( 44 a 2 37 a 14 ) 2 ( a 2 5 a 1 ) = 2 { 44 a 4 257 a 3 127 a 2 + 107 a + 14 } = 2 { ( 44 a 2 37 a 14 ) 257 ( 7 a 2 5 a 2 ) 127 a 2 + 107 a + 14 } = 2 ( 264 a 2 236 a 88 ) . ( a 2 ) ( b 2 ) ( c 2 ) = f ( 2 ) = 8. c y c a 4 b c + 1 = c y c 2 ( 264 a 2 236 a 88 ) 8 = c y c 66 a 2 59 a 22 = 66 39 59 7 3 22 = 2095 Using\ Vieta's \ Formula \ \ for \ f(x)=x^3-7x^2+5x+2=0,\ \ \ \implies\ f(a)=a^3-7a^2+5a+2=0.\\ \displaystyle \ \sum_{cyc}a=7,\ \ \ \sum_{cyc}ab=5,\ \ \ abc=-2, \ \ \ with\ usual\ manipulation\ \sum_{cyc}a=7^2-2*5=39.\\ a \neq 0,\ so\ a^3=7a^2-5a-2,\ \ \ \therefore\ \ a^2=7a-5-\frac 2 a.\\ \implies\ a^3=7*(7a-5-\frac 2 a)\ -5a-2=44a-37- \frac {14} a\ \implies\ \color{#3D99F6}{a^4=44a^2-37a-14}.\\ \displaystyle \sum_{cyc} \dfrac{a^4}{bc+1}= \sum_{cyc} \dfrac{a^5}{abc+a}=\sum_{cyc} \dfrac{a^5}{a-2}=\sum_{cyc} \dfrac{a^5(b-2)(c-2)}{(a-2)(b-2)(c-2)}.\\ (b-2)(c-2)=bc-2(b+c)+4=-\frac 2 a -2(7-a)+4=2a-10-\frac 2 a=\color{#3D99F6}{2(a-5-\frac 1 a)}.\\ a^5(b-2)(c-2)=a^4*a*2(a-5-\frac 1 a)=(44a^2-37a-14)*2*(a^2-5a-1)\\ =2\{44a^4-257a^3-127a^2+107a+14\}\\ = 2\{(44a^2-37a-14)-257(7a^2-5a-2)-127a^2+107a+14\}=2(264a^2 - 236a - 88).\\ (a-2)(b-2)(c-2)=f(2)=8.\\ \therefore \ \displaystyle \sum_{cyc} \dfrac{a^4}{bc+1}=\dfrac{\sum_{cyc}2(264a^2 - 236a - 88)} 8\\ =\sum_{cyc}66\color{#EC7300}{a^2} - 59\color{#EC7300}{a} - 22=66*39-59*7-3*22= \Huge\ \color{#D61F06}{2095}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...