This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow! Fantastic solution!
P.S. I was waiting to see how you'd solve this
Log in to reply
Soon this would be level 5.. :-)... BTW I was busy evaluating cyc ∑ b c + 1 a 5 . Though calculations are a bit nasty but the sum is still evluatable.. :-p
Log in to reply
Should I be preparing for cyc ∑ b c + 1 a 6 ?
Log in to reply
@Hung Woei Neoh – Lol probably then it would never end... :-) chances are low that I'd post that question... So maybe you could post both only If you wish!! :-)
Log in to reply
@Rishabh Jain – I think I'll only post a 6 if you posted a 5 . Otherwise, we'll just end it here :)
Log in to reply
@Hung Woei Neoh – So probably this is the end... It was fun solving this series.. :-)
@Hung Woei Neoh – Why don't people solve these.... Only 3 people got it right .. !!!
Log in to reply
@Rishabh Jain – Give it a few days...sometimes, you'd be surprised that after one night, an additional 200 people viewed your question
Besides, you should take a look at your two problems. I'm guessing that the percentage of attempts is below 25%
Log in to reply
@Hung Woei Neoh – Obviously I'm talking about these problems as a whole. :-)
Log in to reply
@Rishabh Jain – Well, there are a few reasons for this, and I'm sure you know the reasons
Log in to reply
@Hung Woei Neoh – No... Can you please throw some light ? ... if you want to !
Log in to reply
@Rishabh Jain – (Throws a lightbulb, a battery and some wires)
Log in to reply
@Hung Woei Neoh – XD ....Though I cannot find a way to get some light lol ? So ..
Relevant wiki: Newton's Identities
A solution that uses Newton's sums:
From Vieta's formula, we get
a + b + c = 7 a b + a c + b c = 5 a b c = − 2
cyc ∑ b c + 1 a 4 = cyc ∑ a b c + a a 5 = cyc ∑ a − 2 a 5 = a − 2 a 5 + b − 2 b 5 + c − 2 c 5 = ( a − 2 ) ( b − 2 ) ( c − 2 ) a 5 ( b − 2 ) ( c − 2 ) + b 5 ( a − 2 ) ( c − 2 ) + c 5 ( a − 2 ) ( b − 2 ) = a b c − 2 ( a b + a c + b c ) + 4 ( a + b + c ) − 8 a 5 ( b c − 2 ( b + c ) + 4 ) + b 5 ( a c − 2 ( a + c ) + 4 ) + c 5 ( a b − 2 ( a + b ) + 4 ) = − 2 − 2 ( 5 ) + 4 ( 7 ) − 8 a 5 ( a − 2 − 2 ( 7 − a ) + 4 ) + b 5 ( b − 2 − 2 ( 7 − b ) + 4 ) + c 5 ( c − 2 − 2 ( 7 − c ) + 4 ) = − 2 − 1 0 + 2 8 − 8 a 5 ( a − 2 − 1 0 + 2 a ) + b 5 ( b − 2 − 1 0 + 2 b ) + c 5 ( c − 2 − 1 0 + 2 c ) = 8 − 2 a 4 − 1 0 a 5 + 2 a 6 − 2 b 4 − 1 0 b 5 + 2 b 6 − 2 c 4 − 1 0 c 5 + 2 c 6 = 8 2 ( a 6 + b 6 + c 6 ) − 1 0 ( a 5 + b 5 + c 5 ) − 2 ( a 4 + b 4 + c 4 )
Now, we apply Newton's sums:
a + b + c = 7 a 2 + b 2 + c 2 = ( a + b + c ) 2 − 2 ( a b + a c + b c ) = ( 7 ) 2 − 2 ( 5 ) = 3 9 a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) − ( a b + a c + b c ) ( a + b + c ) + 3 ( a b c ) = ( 7 ) ( 3 9 ) − ( 5 ) ( 7 ) + 3 ( − 2 ) = 2 3 2 a 4 + b 4 + c 4 = ( a + b + c ) ( a 3 + b 3 + c 3 ) − ( a b + a c + b c ) ( a 2 + b 2 + c 2 ) + a b c ( a + b + c ) = ( 7 ) ( 2 3 2 ) − ( 5 ) ( 3 9 ) + ( − 2 ) ( 7 ) = 1 4 1 5 a 5 + b 5 + c 5 = ( a + b + c ) ( a 4 + b 4 + c 4 ) − ( a b + a c + b c ) ( a 3 + b 3 + c 3 ) + a b c ( a 2 + b 2 + c 2 ) = ( 7 ) ( 1 4 1 5 ) − ( 5 ) ( 2 3 2 ) + ( − 2 ) ( 3 9 ) = 8 6 6 7 a 6 + b 6 + c 6 = ( a + b + c ) ( a 5 + b 5 + c 5 ) − ( a b + a c + b c ) ( a 4 + b 4 + c 4 ) + a b c ( a 3 + b 3 + c 3 ) = ( 7 ) ( 8 6 6 7 ) − ( 5 ) ( 1 4 1 5 ) + ( − 2 ) ( 2 3 2 ) = 5 3 1 3 0
Substitute these values in:
8 2 ( a 6 + b 6 + c 6 ) − 1 0 ( a 5 + b 5 + c 5 ) − 2 ( a 4 + b 4 + c 4 ) = 8 2 ( 5 3 1 3 0 ) − 1 0 ( 8 6 6 7 ) − 2 ( 1 4 1 5 ) = 8 1 0 6 2 6 0 − 8 6 6 7 0 − 2 8 3 0 = 8 1 6 7 6 0 = 2 0 9 5
U s i n g V i e t a ′ s F o r m u l a f o r f ( x ) = x 3 − 7 x 2 + 5 x + 2 = 0 , ⟹ f ( a ) = a 3 − 7 a 2 + 5 a + 2 = 0 . c y c ∑ a = 7 , c y c ∑ a b = 5 , a b c = − 2 , w i t h u s u a l m a n i p u l a t i o n c y c ∑ a = 7 2 − 2 ∗ 5 = 3 9 . a = 0 , s o a 3 = 7 a 2 − 5 a − 2 , ∴ a 2 = 7 a − 5 − a 2 . ⟹ a 3 = 7 ∗ ( 7 a − 5 − a 2 ) − 5 a − 2 = 4 4 a − 3 7 − a 1 4 ⟹ a 4 = 4 4 a 2 − 3 7 a − 1 4 . c y c ∑ b c + 1 a 4 = c y c ∑ a b c + a a 5 = c y c ∑ a − 2 a 5 = c y c ∑ ( a − 2 ) ( b − 2 ) ( c − 2 ) a 5 ( b − 2 ) ( c − 2 ) . ( b − 2 ) ( c − 2 ) = b c − 2 ( b + c ) + 4 = − a 2 − 2 ( 7 − a ) + 4 = 2 a − 1 0 − a 2 = 2 ( a − 5 − a 1 ) . a 5 ( b − 2 ) ( c − 2 ) = a 4 ∗ a ∗ 2 ( a − 5 − a 1 ) = ( 4 4 a 2 − 3 7 a − 1 4 ) ∗ 2 ∗ ( a 2 − 5 a − 1 ) = 2 { 4 4 a 4 − 2 5 7 a 3 − 1 2 7 a 2 + 1 0 7 a + 1 4 } = 2 { ( 4 4 a 2 − 3 7 a − 1 4 ) − 2 5 7 ( 7 a 2 − 5 a − 2 ) − 1 2 7 a 2 + 1 0 7 a + 1 4 } = 2 ( 2 6 4 a 2 − 2 3 6 a − 8 8 ) . ( a − 2 ) ( b − 2 ) ( c − 2 ) = f ( 2 ) = 8 . ∴ c y c ∑ b c + 1 a 4 = 8 ∑ c y c 2 ( 2 6 4 a 2 − 2 3 6 a − 8 8 ) = c y c ∑ 6 6 a 2 − 5 9 a − 2 2 = 6 6 ∗ 3 9 − 5 9 ∗ 7 − 3 ∗ 2 2 = 2 0 9 5
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Vieta's Formula Problem Solving - Intermediate
*A solution without Newton sums
Using Vieta's : cyc ∑ a = 7 , cyc ∑ a b = 5 , a b c = − 2 T = cyc ∑ − 2 a b c + a a 5 = cyc ∑ a − 2 a 5
Now, a 5 = ( a − 2 ) ( a 4 + 2 a 3 + 4 a 2 + 8 a + 1 6 ) + 3 2 so that: T = cyc ∑ a − 2 3 2 + cyc ∑ ( a 4 + 2 a 3 + 4 a 2 + 8 a + 1 6 )
Now, let's manipulate the original equation:
a 3 = 7 a 2 − 5 a − 2 , multiply both sides by a ,
⟹ a 4 = 7 a 3 − 5 a 2 − 2 a = 4 4 a 2 − 3 7 a − 1 4
Substitute a 3 and a 4 in second sum of T while to calculate cyc ∑ a − 2 1 put x = 2 in f ( x ) − f ′ ( x ) = cyc ∑ a − x 1 (See my soln here )to obtain cyc ∑ a − 2 1 = 8 − 1 1 so that cyc ∑ a − 2 3 2 = − 4 4 .
∴ T = − 4 4 + cyc ∑ ( 6 2 a 2 − 3 9 a − 2 )
= − 4 4 + [ 6 2 ( ( 7 ) 2 − 2 × 5 ) − 3 9 ( 7 ) − 2 × 3 ]
= 2 0 9 5