Waiting for 2016! - 4

Geometry Level 5

S = n = 1 2016 cot 4 ( n π 4033 ) \large \mathcal{S} = \large \sum_{n=1}^{2016} \cot^4 \left( \dfrac{n \pi}{4033} \right)

Find the value of 1 0 7 S \lfloor 10^{-7} \mathcal{S} \rfloor .


The answer is 293947.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let w = e 2 π i / n w=e^{2\pi i/n} be a n-th primitive root of unity and P ( x ) = x n 1 P(x)=x^n-1 . Then we know that cot ( π k n ) = i w k + 1 w k 1 \cot\left(\dfrac{\pi k}{n}\right)=i\dfrac{w^k+1}{w^k-1} . Let y = x + 1 x 1 y=\dfrac{x+1}{x-1} for x 1 x \neq 1 , so x = y + 1 y 1 x=\dfrac{y+1}{y-1} .

We want to find S = k = 1 ( n 1 ) / 2 cot 4 ( π k n ) = 1 2 k = 1 n 1 cot 4 ( π k n ) = 1 2 k = 1 n 1 y k 4 \displaystyle \mathcal{S}=\sum_{k=1}^{(n-1)/2} \cot^4 \left(\dfrac{\pi k}{n}\right)=\dfrac{1}{2}\sum_{k=1}^{n-1} \cot^4 \left(\dfrac{\pi k}{n}\right)=\dfrac{1}{2}\sum_{k=1}^{n-1} y_k^4 for odd n n and for every y y .

So, P ( x ) = ( y + 1 y 1 ) n 1 ( y 1 ) n P ( x ) = ( y + 1 ) n ( y 1 ) n P(x)=\left(\dfrac{y+1}{y-1}\right)^n-1 \implies (y-1)^nP(x)=(y+1)^n-(y-1)^n

Let ( y 1 ) n P ( x ) = Q ( y ) (y-1)^nP(x)=Q(y) . This new polynomial is of degree n 1 n-1 as desired (because we discard x = 1 x=1 ):

Q ( y ) = 2 n y n 1 + 2 ( n 3 ) y n 3 + 2 ( n 5 ) y n 5 + \displaystyle Q(y)=2ny^{n-1}+2\binom{n}{3}y^{n-3}+2\binom{n}{5}y^{n-5}+\cdots

Finally we'll use Netwon's Sums to obtain S \mathcal{S} . Let P m P_m be the m-powers sum of the roots of Q ( y ) Q(y) and S 1 , S 2 , , S n 1 S_1,S_2,\cdots,S_{n-1} be the elementary symmetric sums of the same roots. Then S = 1 2 P 4 \mathcal{S}=\dfrac{1}{2}P_4 and by Vieta's formulas:

S 1 = 0 , S 2 = ( n 3 ) n , S 3 = 0 , S 4 = ( n 5 ) n S_1=0,S_2=\dfrac{\binom{n}{3}}{n},S_3=0,S_4=\dfrac{\binom{n}{5}}{n}

P 1 = S 1 = 0 P_1=S_1=0

P 2 = S 1 P 1 2 S 2 = 2 ( n 3 ) n P_2=S_1P_1-2S_2=-\dfrac{2\binom{n}{3}}{n}

P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 0 P_3=S_1P_2-S_2P_1+3S_3=0

P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 4 S 4 = 2 ( ( n 3 ) n ) 2 4 ( ( n 5 ) n ) P_4=S_1P_3-S_2P_2+S_3P_1-4S_4=2\left(\dfrac{\binom{n}{3}}{n}\right)^2-4\left(\dfrac{\binom{n}{5}}{n}\right)

Expanding we get:

P 4 = 2 ( n 1 ) ( n 2 ) ( n 2 + 3 n 13 ) 90 P_4=\dfrac{2(n-1)(n-2)(n^2+3n-13)}{90}

Then S = ( n 1 ) ( n 2 ) ( n 2 + 3 n 13 ) 90 \mathcal{S}=\dfrac{(n-1)(n-2)(n^2+3n-13)}{90} .

Let n = 4033 n=4033 , then 1 0 7 S = 293947 \lfloor 10^{-7} \mathcal{S} \rfloor=\boxed{293947} .

Hey in the sixth step from above how the limit ( n 1 ) / 2 (n-1)/2 changed to (n-1). Please explain.

Seong Ro - 5 years, 5 months ago

Log in to reply

We have the identity cot n ( t h e t a ) = cot n ( π θ ) \cot^n (theta)=\cot^n(\pi-\theta) for even n n . Hence the sum k = 1 n 1 cot 4 ( π k n ) \displaystyle \sum_{k=1}^{n-1} \cot^4\left(\dfrac{\pi k}{n}\right) is two times the sum k = 1 ( n 1 ) / 2 cot 4 ( π k n ) \displaystyle \sum_{k=1}^{(n-1)/2} \cot^4\left(\dfrac{\pi k}{n}\right) , but I chose to work with the first one because it's easier when you get the polynomial to find the sum of all its roots.

Alan Enrique Ontiveros Salazar - 5 years, 5 months ago

Log in to reply

Oh thanks a lot friend!!

Seong Ro - 5 years, 5 months ago

Log in to reply

@Seong Ro How did you solve this?

Alan Enrique Ontiveros Salazar - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...