Wanna bash it!

Algebra Level 4

( x 1 2 + 2 ) ( x 2 2 + 2 ) ( x 5 2 + 2 ) \large ({x}_{1}^{2}+2)({x}_{2}^{2}+2)\cdots ({x}_{5}^{2}+2)

If x 5 + x + 1 = 0 {x}^{5}+x+1=0 has 5 roots x 1 , x 2 , x 3 , x 4 , x 5 {x}_{1},{x}_{2},{x}_{3},{x}_{4},x_{5} . Find the value of the expression above.


The answer is 51.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Sep 16, 2015

x 5 + x + 1 = 0 ( x 2 + x + 1 ) ( x 3 x 2 + 1 ) = 0 \begin{aligned} x^5+x+1 & = 0 \\ \Rightarrow (x^2+x+1)(x^3-x^2+1) & = 0 \end{aligned}

Now, let the roots of: { x 2 + x + 1 = 0 be x 1 , x 2 { x 1 + x 2 = 1 x 1 x 2 = 1 x 3 x 2 + 1 = 0 be x 3 , x 4 , x 5 { x 3 + x 4 + x 5 = 1 x 3 x 4 + x 4 x 5 + x 5 x 3 = 0 x 3 x 4 x 5 = 1 \begin{cases} x^2 + x + 1 = 0 & \text{be } x_1, x_2 & \Rightarrow \begin{cases} x_1 + x_2 & = -1 \\ x_1x_2 & = 1 \end{cases} \\ x^3 - x^2 + 1 = 0 & \text{be } x_3, x_4, x_5 & \Rightarrow \begin{cases} x_3 + x_4 + x_5 & = 1 \\ x_3x_4 + x_4x_5 + x_5x_3 & = 0 \\ x_3x_4x_5 & = -1 \end{cases} \end{cases}

Now, we have:

( x 1 2 + 2 ) ( x 2 2 + 2 ) = x 1 2 x 2 2 + 2 ( x 1 2 + x 2 2 ) + 4 = ( x 1 x 2 ) 2 + 2 ( ( x 1 + x 2 ) 2 2 x 1 x 2 ) + 4 = 1 + 2 ( 1 2 ) + 4 = 3 \begin{aligned} (x_1^2+2)(x_2^2+2) & = x_1^2x_2^2+2(x_1^2+x_2^2)+4 \\ & = (x_1x_2)^2+2\left((x_1+x_2)^2 - 2x_1x_2 \right) + 4 \\ & = 1 + 2(1-2) + 4 \\ & = 3 \end{aligned}

( x 3 2 + 2 ) ( x 4 2 + 2 ) ( x 5 2 + 2 ) = x 3 2 x 4 2 x 5 2 + 2 ( x 3 2 x 4 2 + x 4 2 x 5 2 + x 5 2 x 3 2 ) + 4 ( x 3 2 + x 4 2 + x 5 2 ) + 8 = ( x 3 x 4 x 5 ) 2 + 2 ( ( x 3 x 4 + x 4 x 5 + x 5 x 3 ) 2 2 ( x 3 2 x 4 x 5 + x 3 x 4 2 x 5 + x 3 x 4 x 5 2 ) ) + 4 ( ( x 3 + x 4 + x 5 ) 2 2 ( x 3 x 4 + x 4 x 5 + x 5 x 3 ) ) + 8 = 1 + 2 ( 0 ) 4 ( x 3 x 4 x 5 ) ( x 3 + x 4 + x 5 ) + 4 ( 1 2 ( 0 ) ) + 8 = 13 4 ( 1 ) ( 1 ) = 17 \begin{aligned} (x_3^2+2)(x_4^2+2)(x_5^2+2) & = x_3^2x_4^2x_5^2 + 2\left(x_3^2x_4^2 + x_4^2x_5^2 + x_5^2x_3^2\right) + 4\left(x_3^2+x_4^2+x_5^2\right) + 8 \\ & = \left(x_3x_4x_5\right)^2 + 2\left((x_3x_4 + x_4x_5 + x_5x_3)^2 - 2(x_3^2x_4x_5 + x_3x_4^2x_5 + x_3x_4x_5^2) \right) \\ & \quad \quad + 4\left((x_3+x_4+x_5)^2 - 2(x_3x_4 + x_4x_5 + x_5x_3) \right) + 8 \\ & = 1 + 2(0) - 4(x_3x_4x_5)(x_3+x_4+x_5) +4\left(1-2(0)\right) + 8 \\ & = 13 - 4(-1)(1) \\ & = 17 \end{aligned}

Therefore,

( x 1 2 + 2 ) ( x 2 2 + 2 ) ( x 3 2 + 2 ) ( x 4 2 + 2 ) ( x 5 2 + 2 ) = 3 × 17 = 51 \begin{aligned} (x_1^2+2)(x_2^2+2)(x_3^2+2)(x_4^2+2)(x_5^2+2) & = 3 \times 17 = \boxed{51} \end{aligned}

Great solution. Sir,your solution is always different. Please see my solution and tell me how is it.

Saarthak Marathe - 5 years, 9 months ago

Log in to reply

Your solution depends knowing the fact that x = ± 2 i x=\pm \sqrt{2}i satisfy the equation before hand.

Chew-Seong Cheong - 5 years, 9 months ago

Log in to reply

I am not claiming that i know that the equation is satisfied for those two values.Can't we say that the value of x x can be any number? Because when we plot the graph,it is for all values of x x (even in Argand plane)

Saarthak Marathe - 5 years, 9 months ago

Log in to reply

@Saarthak Marathe It's alright to have solved the values of x x beforehand. But you're wrong that x = 2 i x = \sqrt2 i or x = 2 i x =- \sqrt 2i . So your entire solution is wrong.

Chew-Seong Cheong's approach is the most standard approach. But there's still a much simpler approach. Starting with f ( x ) = x 5 + x + 1 f(x) = x^5 +x + 1 , then g ( x ) = f ( x ) g(x) = f(\sqrt x) and h ( x ) = g ( x 2 ) h(x) = g(x - 2) .

Pi Han Goh - 5 years, 9 months ago

Log in to reply

@Pi Han Goh I am not saying that x = 2 i x=\sqrt{2}i or x = 2 i x=-\sqrt{2}i are roots of the equation . Please elaborate why I am wrong. I don't think my approach is wrong.

Saarthak Marathe - 5 years, 9 months ago

Log in to reply

@Saarthak Marathe You said "This equation will be satisfied for x = 2 i x=\sqrt{2}i and x = 2 i x=-\sqrt{2}i ".

Pi Han Goh - 5 years, 9 months ago

Log in to reply

@Pi Han Goh Please read the changes that I have made in that statement.

Saarthak Marathe - 5 years, 8 months ago

Log in to reply

@Saarthak Marathe Yep it's correct now. It would be better to explain why you you x = 2 i x = \sqrt 2 i and x = 2 i x = -\sqrt2 i .

Pi Han Goh - 5 years, 8 months ago

@Pi Han Goh can you please elaborate how did you solve this phi han goh i also tried your method but was stuck at (x-2)^5/2 + (x-2)^1/2 + 1=0

Somesh Patil - 5 years, 9 months ago

Log in to reply

@Somesh Patil Hint; Start by writing a 5th degree polynomial such that it has roots x 1 2 , x 2 2 , , x 5 2 x_1^2, x_2^2, \ldots , x_5 ^2 .

Pi Han Goh - 5 years, 9 months ago

@Pi Han Goh You are talking of solution I had posted right?

Akul Agrawal - 5 years, 8 months ago

That needs some patience :)

Akul Agrawal - 5 years, 8 months ago

sir, i have a doubt. given eqn is satisfied by 'W'( read omega ) also, where W is cube root of unity, means solution of eqn X^3 = 1. we know that W^3=1 and 1+W+W^2 =0, so W^5 = W^2. so given eqn becomes 1+x+x^5 = 1+W+ W^5 = 1+W+W^2=0. similarly W^2 , W^4, W^5, and W^8 will also satisfy given equation. why can't i take W as one of the root.

manish kumar singh - 5 years, 7 months ago

Log in to reply

Clearly ω a n d ω 2 \omega \quad and\quad { \omega }^{ 2 } are the roots of the given equation (see the factorization).

btw you can check my solution in which there is no need of finding the roots

Akul Agrawal - 5 years, 7 months ago

Note that 1 1 is not a root of x 2 + x + 1 = 0 x^2+x+1=0 and ω 3 = 1 \omega^3 = 1 , therefore, ω 3 \omega^3 is not a root of x 2 + x + 1 = 0 x^2+x+1=0 . The roots x 1 x_1 and x 2 x_2 are ω \omega and ω 2 \omega^2 .

Chew-Seong Cheong - 5 years, 7 months ago

Cool observation. Sir

Dev Sharma - 5 years, 7 months ago

can you tell me how you have factorised it

Deepansh Jindal - 5 years, 2 months ago

Log in to reply

First we assume that x 5 + x + 1 = ( x 2 + a x + 1 ) ( x 3 + b x 2 + c x + 1 ) x^5+x+1 = (x^2+ax+1)(x^3+bx^2+cx+1) . Expand out the RHS and then equate the coefficients.

Chew-Seong Cheong - 5 years, 2 months ago
Akul Agrawal
Sep 18, 2015

A s i m p l e s t s o l u t i o n a c c o r d i n g t o m e . . . i f f ( x ) h a s r o o t s x i 1 i 5 T h e n g ( x ) w i t h r o o t s x i 2 + 2 = f ( ± x 2 ) ( x 2 ) 5 2 + ( x 2 ) 1 2 + 1 = 0 T a k e 1 t o R H S a n d s q u a r e ( x 2 4 x + 5 ) 2 ( x 2 ) = 1 N o w s i m p l y f i n d p r o d u c t o f r o o t s ( n o n e e d t o e x p a n d ) ( 51 ) 1 = 51 A\quad simplest\quad solution\quad according\quad to\quad me...\\ if\quad f(x)\quad has\quad roots\quad { x }_{ i }\quad 1\le i\le 5\\ Then\quad g(x)\quad with\quad roots\quad { x }_{ i }^{ 2 }+2\quad =\quad f(\pm \sqrt { x-2 } )\\ \Rightarrow { (x-2) }^{ \frac { 5 }{ 2 } }+{ (x-2) }^{ \frac { 1 }{ 2 } }+1=0\\ Take\quad 1\quad to\quad RHS\quad and\quad square\\ { ({ x }^{ 2 }-4x+5) }^{ 2 }(x-2)=1\\ Now\quad simply\quad find\quad product\quad of\quad roots\\ (no\quad need\quad to\quad expand)\quad \frac { -(-51) }{ 1 } =51

Did it the same way! upvoted

Prakhar Bindal - 5 years, 6 months ago

This is better way then other tedious methods.

Chitranshu Vashishth - 11 months ago
Saarthak Marathe
Sep 16, 2015

The given equation can be written as, x 5 + x + 1 = ( x x 1 ) ( x x 2 ) . . . . ( x x 5 ) {x}^5+x+1=(x-{x}_{1})(x-{x}_2)....(x-{x}_5)

The above equation is satisfied for all values of x x as the graph of this function is for all values of x x . Therefore, This equation will be satisfied for x = 2 i x=\sqrt{2}i and x = 2 i x=-\sqrt{2}i

Take x = 2 i x=\sqrt{2}i

Therefore, 2 5 i 5 + 2 i + 1 = ( 2 i x 1 ) . . . . . . ( 2 i x 5 ) = 5 2 i + 1 {\sqrt{2}}^{5}*{i}^{5}+\sqrt{2}i+1=(\sqrt{2}i-{x}_{1})......(\sqrt{2}i-{x}_5)=5\sqrt{2}i+1

Take x = 2 i x=-\sqrt{2}i

Therefore, 2 5 i 5 2 i + 1 = ( 2 i x 1 ) . . . . . . ( 2 i x 5 ) = 5 2 i + 1 {-\sqrt{2}}^{5}*{i}^{5}-\sqrt{2}i+1=(-\sqrt{2}i-{x}_{1})......(-\sqrt{2}i-{x}_{5})=-5\sqrt{2}i+1

Multiplying both the equations we get, [ ( 2 i x 1 ) ( 2 i + x 1 ) . . . . . . . . . ( 2 i x 5 ) ( 2 i + x 5 ) = ( 5 2 i + 1 ) ( 5 2 i + 1 ) -[( \sqrt{2}i-{x}_{1})( \sqrt{2}i+{x}_{1}).........(\sqrt{2}i-{x}_{5})( \sqrt{2}i+{x}_{5})=(5\sqrt{2}i+1)(-5\sqrt{2}i+1)

Simplifying this equation we get that, ( 2 + x 1 2 ) . . . . . . . ( 2 + x 5 2 ) = 1 ( 25 2 ) = 51 (2+{x}_{1}^{2}).......(2+{x}_{5}^{2})=1-(-25*2)=\boxed{51}

I d i d i t t h e s a m e w a y h o w e v e r t h e s o l u t i o n c a n b e s t a t e d a s : f ( x ) = x 5 + x + 1 . . . . . . 1 a l s o f ( x ) = ( x x 1 ) . . . . . . . ( x x 5 ) . . . . . . 2 w h e n w e k e e p x = ± 2 i b o t h 1 a n d 2 g i v e s s a m e r e m a i n d e r s o w e c a n s a y t h a t w h e n x = ± 2 i x 5 + x + 1 = ( x x 1 ) . . . . . . . . ( x x 5 ) . N o w w e c a n s i m p l i f y i t a s y o u h a v e d o n e . H o p e t h a t t h i s i s t h e r i g h t w a y . I\quad did\quad it\quad the\quad same\quad way\quad however\quad the\quad solution\quad can\quad be\quad stated\quad as:\\ f(x)={ x }^{ 5 }+x+1\quad ......\quad \boxed { 1 } \\ also\quad f(x)=(x-{ x }_{ 1 }).......(x-{ x }_{ 5 })\quad ......\boxed { 2 } \\ \therefore \quad when\quad we\quad keep\quad x=\pm \sqrt { 2 } i\\ both\quad \boxed { 1 } \quad and\quad \boxed { 2 } \quad gives\quad same\quad remainder\quad so\quad we\quad can\quad say\quad that\quad when\quad x=\pm \sqrt { 2 } i\\ { x }^{ 5 }+x+1=(x-{ x }_{ 1 })........(x-{ x }_{ 5 }).\\ Now\quad we\quad can\quad simplify\quad it\quad as\quad you\quad have\quad done.\\ Hope\quad that\quad this\quad is\quad the\quad right\quad way.\\

Samarth Agarwal - 5 years, 9 months ago
Daniel Rabelo
Sep 16, 2015

Let's denote S 1 = x 1 + x 2 + x 3 + x 4 + x 5 S_1=x_1+x_2+x_3+x_4+x_5 , S 2 = x 1 x 2 + x 1 x 3 + . . . S_2=x_1x_2+x_1x_3+... , S 3 = x 1 x 2 x 3 + x 1 x 2 x 4 + . . . S_3=x_1x_2x_3+x_1x_2x_4+... , S 4 = x 1 x 2 x 3 x 4 + . . . S_4=x_1x_2x_3x_4+... and S 5 = x 1 x 2 x 3 x 4 x 5 S_5=x_1x_2x_3x_4x_5 . From Vieta's formulae we have S 1 = S 2 = S 3 = 0 S_1=S_2=S_3=0 , S 4 = 1 S_4=1 and S 5 = 1 S_5=-1 .

We want to evaluate: k = 1 5 ( x k 2 + 2 ) \prod_{k=1}^5 (x_k^2+2) .

Considering i as imaginary unit:

k = 1 5 ( x k 2 + 2 ) = k = 1 5 ( x k + i 2 ) ( x k i 2 ) = k = 1 5 ( x k + i 2 ) k = 1 5 ( x k i 2 ) \prod_{k=1}^5 (x_k^2+2)=\prod_{k=1}^5 (x_k+i\sqrt{2})(x_k-i\sqrt{2})=\prod_{k=1}^5 (x_k+i\sqrt{2})\prod_{k=1}^5 (x_k-i\sqrt{2})

Doing this product combinating terms, we have:

k = 1 5 ( x k + i 2 ) = S 5 + i 2 S 4 + ( i 2 ) 2 S 3 + ( i 2 ) 3 S 2 + ( i 2 ) 4 S 1 + ( i 2 ) 5 \prod_{k=1}^5 (x_k+i\sqrt{2})=S_5+i\sqrt{2} S_4+(i\sqrt{2})^2 S_3+(i\sqrt{2})^3 S_2+(i\sqrt{2})^4 S_1+(i\sqrt{2})^5

k = 1 5 ( x k + i 2 ) = 1 + i 2 + ( i 2 ) 5 = 1 + 5 2 i \prod_{k=1}^5 (x_k+i\sqrt{2})=-1+i\sqrt{2}+(i\sqrt{2})^5=-1+5\sqrt{2}i

In the same way:

k = 1 5 ( x k i 2 ) = 1 i 2 + ( i 2 ) 5 = 1 5 2 i \prod_{k=1}^5 (x_k-i\sqrt{2})=-1-i\sqrt{2}+(-i\sqrt{2})^5=-1-5\sqrt{2}i

Thus:

k = 1 5 ( x k 2 + 2 ) = ( 1 + 5 2 i ) ( 1 5 2 i ) = ( ( 1 ) 2 + ( 5 2 ) 2 ) = 51 \prod_{k=1}^5 (x_k^2+2) = (-1+5\sqrt{2}i)(-1-5\sqrt{2}i) = ((-1)^2+(5\sqrt{2})^2) = 51 .

Nice. Its just a good way of representing the same solution which I gave.

Saarthak Marathe - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...