r = 1 ∏ 4 4 ( cot ( r ∘ ) − 1 )
This product equals 2 k . Find k .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Slight improvement: You can use the R method for cos ( r ) − sin ( r ) to get 2 sin ( 9 0 ∘ − r ) immediately.
Nice question Nihar!
Log in to reply
What is R method? I guess I haven't learnt it yet...
Thanks :)
Log in to reply
This one .
Log in to reply
@Pi Han Goh – Oh , we call it polar method. Anyways , thanks.
Hey good solution!
Note: All the angles mentioned are in degrees
1 ) tan ( 4 5 − x ) = 1 + tan ( x ) 1 − tan ( x )
2 ) ∏ r = 1 4 4 tan ( r ) tan ( 4 5 − r ) = tan ( 1 ) . . . . . . . tan ( 4 3 ) tan ( 4 4 ) tan ( 4 4 ) tan ( 4 3 ) . . . . . . . tan ( 1 ) = 1
3 ) ( 1 + tan ( x ) ) ( 1 + tan ( 4 5 − x ) ) = 1 + tan ( x ) + tan ( 4 5 − x ) + tan ( x ) tan ( 4 5 − x ) = 1 + 1 − tan ( x ) tan ( 4 5 − x ) + tan ( x ) tan ( 4 5 − x ) = 2
Now to the question
∏ r = 1 4 4 tan ( r ) 1 − tan ( r )
= ∏ r = 1 4 4 tan ( r ) tan ( 4 5 − r ) ( 1 + tan ( r ) )
= ∏ r = 1 4 4 tan ( r ) tan ( 4 5 − r ) ∏ r = 1 4 4 ( 1 + tan ( r ) )
= ( 1 + tan ( 1 ) ) ( 1 + tan ( 4 4 ) ) ( 1 + tan ( 2 ) ) ( 1 + tan ( 4 3 ) ) . . . . . . . ( 1 + tan ( 2 2 ) ) ( 1 + tan ( 2 3 ) )
we observe that there are 2 2 pairs which follow statement 3 above.
thus the answer is 2 2 2
Nice solution.But I think you must connect those 3 points with the working below instead of separating them , because people may find it difficult in realizing what is used where.(I found it difficult). Nevertheless , Upvoted! :)
The same I did. Nice solution
Problem Loading...
Note Loading...
Set Loading...
r = 1 ∏ 4 4 ( cot r − 1 ) = r = 1 ∏ 4 4 ( sin r cos r − 1 ) = r = 1 ∏ 4 4 ( sin r cos r − sin r ) = r = 1 ∏ 4 4 sin r sin ( 9 0 − r ) − sin r = r = 1 ∏ 4 4 sin r 2 cos ( 2 9 0 ) sin ( 2 9 0 − 2 r ) = r = 1 ∏ 4 4 sin r 2 sin ( 4 5 − r ) = ( 2 ) 4 4 × sin 1 ∘ × sin 2 ∘ × … sin 2 2 ∘ × sin 2 3 ∘ × … sin 4 3 ∘ × sin 4 4 ∘ sin 4 4 ∘ × sin 4 3 ∘ × … sin 2 3 ∘ × sin 2 2 ∘ × … sin 2 ∘ × sin 1 ∘ = 2 2 1 × 4 4 × 1 = 2 2 2 ⇒ k = 2 2