Cotan Product... Sort of...

Geometry Level 2

r = 1 44 ( cot ( r ) 1 ) \large \displaystyle\prod_{r=1}^{44} (\cot (r^\circ) - 1)

This product equals 2 k . 2^{k}. Find k . k.


The answer is 22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Sep 9, 2015

r = 1 44 ( cot r 1 ) = r = 1 44 ( cos r sin r 1 ) = r = 1 44 ( cos r sin r sin r ) = r = 1 44 sin ( 90 r ) sin r sin r = r = 1 44 2 cos ( 90 2 ) sin ( 90 2 r 2 ) sin r = r = 1 44 2 sin ( 45 r ) sin r = ( 2 ) 44 × sin 4 4 × sin 4 3 × sin 2 3 × sin 2 2 × sin 2 × sin 1 sin 1 × sin 2 × sin 2 2 × sin 2 3 × sin 4 3 × sin 4 4 = 2 1 2 × 44 × 1 = 2 22 k = 22 \Large{\displaystyle\prod_{r=1}^{44} (\cot r - 1) \\ = \displaystyle \prod_{r=1}^{44} \left(\dfrac{\cos r}{\sin r} - 1\right) \\ = \displaystyle\prod_{r=1}^{44} \left(\dfrac{\cos r - \sin r}{\sin r}\right) \\ = \displaystyle\prod_{r=1}^{44} \dfrac{\sin(90-r) - \sin r}{\sin r} \\ = \displaystyle\prod_{r=1}^{44} \dfrac{2\cos\left(\dfrac{90}{2}\right)\sin\left(\dfrac{90-2r}{2}\right)}{\sin r} \\ = \displaystyle\prod_{r=1}^{44} \dfrac{\sqrt{2}\sin(45-r)}{\sin r} \\ = (\sqrt{2})^{44} \times \dfrac{\sin 44^\circ\times \sin 43^\circ\times \dots \sin 23^\circ\times \sin 22^\circ\times \dots \sin 2^\circ\times\sin 1^\circ}{\sin 1^\circ\times\sin 2^\circ\times \dots \sin 22^\circ\times\sin 23^\circ\times \dots\sin 43^\circ\times\sin 44^\circ} \\ \\ \\ = 2^{\frac{1}{2} \times 44} \times 1 \\ = 2^{22} \\ \Rightarrow \boxed{k=22}}

Slight improvement: You can use the R method for cos ( r ) sin ( r ) \cos(r) - \sin(r) to get 2 sin ( 9 0 r ) \sqrt2 \sin(90^\circ - r) immediately.

Nice question Nihar!

Pi Han Goh - 5 years, 9 months ago

Log in to reply

What is R method? I guess I haven't learnt it yet...

Thanks :)

Nihar Mahajan - 5 years, 9 months ago

Log in to reply

This one .

Pi Han Goh - 5 years, 9 months ago

Log in to reply

@Pi Han Goh Oh , we call it polar method. Anyways , thanks.

Nihar Mahajan - 5 years, 9 months ago

Log in to reply

@Nihar Mahajan No problem! Post more!

Pi Han Goh - 5 years, 9 months ago

Hey good solution!

Hrithik Nambiar - 5 years, 8 months ago
Tanishq Varshney
Sep 9, 2015

Note: All the angles mentioned are in degrees

1 ) tan ( 45 x ) = 1 tan ( x ) 1 + tan ( x ) \large{1) \quad \tan (45-x)=\frac{1-\tan (x)}{1+\tan (x)}}

2 ) r = 1 44 tan ( 45 r ) tan ( r ) = tan ( 44 ) tan ( 43 ) . . . . . . . tan ( 1 ) tan ( 1 ) . . . . . . . tan ( 43 ) tan ( 44 ) = 1 \large{2) \quad \prod _{ r=1 }^{ 44 }{ \frac { \tan { \left( 45-r \right) } }{ \tan { \left( r \right) } } } =\frac{\color{#D61F06}{\tan(44)}\color{#3D99F6}{\tan(43)}.......\color{#20A900}{\tan(1)}}{\color{#20A900}{\tan(1)}.......\color{#3D99F6}{\tan(43)}\color{#D61F06}{\tan(44)}}=1}

3 ) ( 1 + tan ( x ) ) ( 1 + tan ( 45 x ) ) = 1 + tan ( x ) + tan ( 45 x ) + tan ( x ) tan ( 45 x ) = 1 + 1 tan ( x ) tan ( 45 x ) + tan ( x ) tan ( 45 x ) = 2 \large{3) \quad (1+\tan(x))(1+\tan(45-x))=1+\tan(x)+\tan(45-x)+\tan(x)\tan(45-x)=1+1-\tan(x)\tan(45-x)+\tan(x)\tan(45-x)=2}

Now to the question

r = 1 44 1 tan ( r ) tan ( r ) \large{\prod _{ r=1 }^{ 44 }{ \frac { 1-\tan { \left( r \right) } }{ \tan { \left( r \right) } } } }

= r = 1 44 tan ( 45 r ) ( 1 + tan ( r ) ) tan ( r ) \large{=\prod _{ r=1 }^{ 44 }{ \frac { \tan { \left( 45-r \right) \left( 1+\tan { \left( r \right) } \right) } }{ \tan { \left( r \right) } } } }

= r = 1 44 tan ( 45 r ) tan ( r ) r = 1 44 ( 1 + tan ( r ) ) \large{=\prod _{ r=1 }^{ 44 }{ \frac { \tan { \left( 45-r \right) } }{ \tan { \left( r \right) } } } \prod _{ r=1 }^{ 44 }{ \left( 1+\tan { \left( r \right) } \right) } }

= ( 1 + tan ( 1 ) ) ( 1 + tan ( 44 ) ) ( 1 + tan ( 2 ) ) ( 1 + tan ( 43 ) ) . . . . . . . ( 1 + tan ( 22 ) ) ( 1 + tan ( 23 ) ) \large{=(1+\tan(1))(1+\tan(44))(1+\tan(2))(1+\tan(43)).......(1+\tan(22))(1+\tan(23))}

we observe that there are 22 22 pairs which follow statement 3 3 above.

thus the answer is 2 22 \large{\boxed{2^{22}}}

Nice solution.But I think you must connect those 3 points with the working below instead of separating them , because people may find it difficult in realizing what is used where.(I found it difficult). Nevertheless , Upvoted! :)

Nihar Mahajan - 5 years, 9 months ago

The same I did. Nice solution

Shreyash Rai - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...