Sum 3.

Calculus Level 3

If n = 1 1 n 2 = π 2 6 \displaystyle \sum^\infty_{n=1}\frac{1}{n^2}=\frac{\pi^2}{6} , then what is the value of n = 0 1 ( 2 n + 1 ) 2 ? \large \sum^\infty_{n=0}\frac{1}{(2n+1)^2}?

For more problems on mathematics, click here.

π 2 24 \frac{\pi^2}{24} π 2 8 \frac{\pi^2}{8} None of these π 2 12 \frac{\pi^2}{12}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

n = 1 1 n 2 all terms = n = 0 1 ( 2 n + 1 ) 2 odd terms + n = 1 1 ( 2 n ) 2 even terms n = 0 1 ( 2 n + 1 ) 2 = n = 1 1 n 2 n = 1 1 ( 2 n ) 2 = n = 1 1 n 2 1 4 n = 1 1 n 2 = ( 1 1 4 ) n = 1 1 n 2 = 3 4 n = 1 1 n 2 = 3 4 × π 2 6 = π 2 8 \begin{aligned} \underbrace{\sum_{n=1}^\infty \frac 1{n^2}}_{\text{all terms}} & = \underbrace{\sum_{n=0}^\infty \frac 1{(2n+1)^2}}_{\text{odd terms}} + \underbrace{\sum_{n=1}^\infty \frac 1{(2n)^2}}_{\text{even terms}} \\ \implies \sum_{n=0}^\infty \frac 1{(2n+1)^2} & = \sum_{n=1}^\infty \frac 1{n^2} - \sum_{n=1}^\infty \frac 1{(2n)^2} \\ & = \sum_{n=1}^\infty \frac 1{n^2} - \frac 14 \sum_{n=1}^\infty \frac 1{n^2} \\ & = \left(1-\frac 14\right)\sum_{n=1}^\infty \frac 1{n^2} \\ & = \frac 34 \sum_{n=1}^\infty \frac 1{n^2} \\ & = \frac 34 \times \frac {\pi^2}6 \\ & = \boxed{\dfrac {\pi^2}8} \end{aligned}

Nice solution.Thanks!

Sahil Silare - 4 years, 8 months ago

Sir, it is n = 1 1 n 2 \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n^2} .

Tapas Mazumdar - 4 years, 8 months ago

Log in to reply

Thanks. I mixed up with n = 0 1 2 n + 1 \displaystyle \sum_{n=0}^\infty \frac 1{2n+1} .

Chew-Seong Cheong - 4 years, 8 months ago

What are you saying? Please explain.

Sahil Silare - 4 years, 8 months ago

Log in to reply

It was a minor error in Chew Seong's solution. He had mistakenly written it as n = 0 1 n 2 \displaystyle \sum_{n=0}^{\infty} \dfrac{1}{n^2} .

Tapas Mazumdar - 4 years, 8 months ago

Log in to reply

@Tapas Mazumdar Thanks dude I had got it.

Sahil Silare - 4 years, 8 months ago

On another note, about this problem, you may want to try this out as well.

Tapas Mazumdar - 4 years, 8 months ago
Viki Zeta
Oct 3, 2016

S 1 = n = 1 1 n 2 = 1 1 + 1 4 + 1 9 + 1 16 + 1 25 + = π 2 6 Let, S 2 = 1 1 + 1 9 + 1 25 + = n = 1 1 ( 2 n + 1 ) 2 S 2 = 1 1 + 1 4 + 1 9 + 1 16 + 1 25 + 1 4 1 16 = ( 1 1 + 1 4 + 1 9 + 1 16 + 1 25 + ) ( 1 4 + 1 16 + ) = n = 1 1 n 2 n = 1 1 ( 2 n ) 2 = n = 1 1 n 2 1 4 n = 1 1 n 2 = π 2 6 1 4 π 2 6 = 4 π 2 π 2 24 = 3 24 π 2 = π 2 8 \displaystyle S_1 = \sum_{n=1}^{\infty} \dfrac{1}{n^2} = \dfrac{1}{1} + \dfrac{1}{4} + \dfrac{1}{9} + \dfrac{1}{16} + \dfrac{1}{25} + \ldots = \displaystyle \dfrac{\pi^2}{6} \\ \displaystyle \text{Let, } \\ \displaystyle S_2 = \dfrac{1}{1} + \dfrac{1}{9} + \dfrac{1}{25} + \ldots = \sum_{n=1}^{\infty}\dfrac{1}{(2n+1)^2} \\ \displaystyle \implies S_2 = \dfrac{1}{1} + \color{#D61F06}{\dfrac{1}{4}} + \dfrac{1}{9} + \color{#D61F06}{\dfrac{1}{16}} + \dfrac{1}{25} + \ldots - \displaystyle \color{#D61F06}{\dfrac{1}{4}} - \color{#D61F06}{\dfrac{1}{16}} - \ldots \\ \displaystyle = \color{#3D99F6}{(\dfrac{1}{1} + \dfrac{1}{4} + \dfrac{1}{9} + \dfrac{1}{16} + \dfrac{1}{25} + \ldots)} - \color{#D61F06}{(\dfrac{1}{4} + \dfrac{1}{16} + \ldots)} \\ \displaystyle = \sum_{n=1}^{\infty}\dfrac{1}{n^2} - \sum_{n=1}^{\infty}\dfrac{1}{(2n)^2}\\ \displaystyle = \color{#3D99F6}{\sum_{n=1}^{\infty}\dfrac{1}{n^2}} - \color{#D61F06}{\dfrac{1}{4}}\color{#3D99F6}{\sum_{n=1}^{\infty}\dfrac{1}{n^2}} \\ \displaystyle = \dfrac{\pi^2}{6} - \dfrac{1}{4} \dfrac{\pi^2}{6} \\ \displaystyle = \dfrac{4\pi^2 - \pi^2}{24} \\ \displaystyle = \dfrac{3}{24} \pi^2 \\ \displaystyle = \dfrac{\pi^2}{8}

Nice solution. Thanks!

Sahil Silare - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...