Welcome 2016! Part 12

Find the remainder when the expression below

9 × 99 × 999 × × 999999 9 999 9 s \large 9 \times 99 \times 999 \times \ldots \times \underbrace{{999999\ldots 9}}_{999 \ 9's}

is divided by 1000.


The answer is 109.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Dec 17, 2015

write it as ( 1 0 1 1 ) ( 1 0 2 1 ) ( 1 0 3 1 ) ( 1 0 4 1 ) . . . ( 1 0 999 1 ) (10^1-1)(10^2-1)(10^3-1)(10^4-1)...(10^{999}-1) using simple modulo arithmetic this is congruent to ( 10 1 ) ( 100 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) . . . . ( 1 ) ( 1 ) 997 t i m e s 891 109 ( m o d 1000 ) (10-1)(100-1)\underbrace{(-1)(-1)(-1)(-1)....(-1)(-1)}_{997 times}\equiv-891\equiv\boxed{109}\pmod{1000}

Haha! The same way +1

Department 8 - 5 years, 5 months ago

i don't understand why you wrote 1000-1 as -1.......which concept of simple modulo arithmetic

Mycobacterium Tuberculae - 5 years, 5 months ago

Log in to reply

can you elaborate where you require help?

Aareyan Manzoor - 5 years, 5 months ago

Log in to reply

in the third step where you write (-1)........upto 997 times .why you write 1000-1 like only-1

Mycobacterium Tuberculae - 5 years, 5 months ago

Log in to reply

@Mycobacterium Tuberculae ok... by modulo arithmetic we know a + b ( m o d c ) ( a ( m o d c ) + b ( m o d c ) ) ( m o d c ) a+b\pmod{c}\equiv (a\pmod{c}+b\pmod{c})\pmod{c} using this 1000 + ( 1 ) ( m o d 1000 ) 1000 ( m o d 1000 ) + ( 1 ) ( m o d 1000 ) 0 1 ( m o d 1000 ) 1000+(-1)\pmod{1000}\equiv 1000\pmod{1000}+(-1)\pmod{1000}\equiv 0-1\pmod{1000}

Aareyan Manzoor - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...