We’ve come a long way from where we began

Geometry Level 3

In a triangle A B C \triangle ABC with r A = 5 , r B = 12 , r C = 20 r_A = 5 ,r_B = 12, r_C =20 , let Φ \Phi denote its perimeter.

Find the value of 10 Φ 10 \Phi .

Details and Assumption :

  • r A , r B , r C r_A , r_B , r_C are radii of excircles opposite to vertices A , B , C A,B,C .


The answer is 400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nihar Mahajan
May 8, 2015

1 r = 1 r A + 1 r B + 1 r C r = 3 \dfrac{1}{r}=\dfrac{1}{r_A}+\dfrac{1}{r_B}+\dfrac{1}{r_C} \Rightarrow r=3

A ( A B C ) ( Δ ) = r . r A . r B . r C Δ = 60 A(ABC)(\Delta)=\sqrt{r.r_A.r_B.r_C} \Rightarrow \Delta = 60

Δ r A = ( s a ) Δ r B = ( s b ) Δ r C = ( s c ) \dfrac{\Delta}{r_A}=(s-a) \\\dfrac{\Delta}{r_B}=(s-b) \\\dfrac{\Delta}{r_C}=(s-c)

Adding all 3 gives :

12 + 5 + 3 = 3 s 2 s s = 20 Φ = 40 10 Φ = 400 12+5+3=3s-2s \\ s=20 \\ \Phi=40 \\ \boxed{10\Phi=400}

For more details click here

Moderator note:

You applied just the right amount of work. Good job!

PROBLEM POSTER CHALLENGE NOTE -: C O R R E C T ! ! CORRECT!!

Harsh Shrivastava - 6 years, 1 month ago

Log in to reply

CHALLENGE STUDENT NOTE: T H A N K S ! ! THANKS!!

Nihar Mahajan - 6 years, 1 month ago

Log in to reply

PROBLEM POSTER CHALLENGE NOTE -: F i n d Find the relation b/w prob & title.....

Harsh Shrivastava - 6 years, 1 month ago

Log in to reply

@Harsh Shrivastava CHALLENGE STUDENT NOTE: E R R O R : 404 ERROR :404 Relation not found!

Nihar Mahajan - 6 years, 1 month ago

Log in to reply

@Nihar Mahajan PROBLEM POSTER CHALLENGE NOTE -: T h o u Thou shalt find it! :P

Harsh Shrivastava - 6 years, 1 month ago

We know r(a) r(b)+r(b) r(c)+r(c)*r(a)=s^2

hence we get 10P=400

Aakash Khandelwal - 5 years, 11 months ago
Saharsh Anand
May 9, 2015

From the properties of triangle, we know that

r 1 = δ ( s a ) r_1=\frac{\delta}{(s-a)} , r 1 = δ ( s a ) r_1=\frac{\delta}{(s-a)} and r 1 = δ ( s a ) r_1=\frac{\delta}{(s-a)}

s s = semi-perimeter, δ \delta = area and a , b , c a, b, c = sides of triangle

Now to obtain a relation between here we can do some rearrangements in above equation. r 1 r 2 + r 2 r 3 + r 3 r 1 r_1\cdot r_2+r_2\cdot r_3+r_3\cdot r_1 = δ 2 ( s a ) ( s b ) + δ 2 ( s b ) ( s c ) + δ 2 ( s a ) ( s c ) =\frac{\delta ^2}{(s-a)\cdot(s-b)}+\frac{\delta ^2}{(s-b)\cdot(s-c)}+\frac{\delta ^2}{(s-a)\cdot(s-c)} = δ 2 ( s a ) ( s b ) ( s c ) { ( s a ) + ( s b ) + ( s c ) } = \frac{\delta ^2}{(s-a)\cdot(s-b)\cdot(s-c)}\{{(s-a)+(s-b)+(s-c)}\} = s δ 2 s ( s a ) ( s b ) ( s c ) { s } = \frac{s\cdot\delta ^2}{s\cdot(s-a)\cdot(s-b)\cdot(s-c)}\{{s}\}

So r 1 r 2 + r 2 r 3 + r 3 r 1 = s 2 r_1\cdot r_2+r_2\cdot r_3+r_3\cdot r_1 = s^2

Hence Φ = 2 s = 2 r 1 r 2 + r 2 r 3 + r 3 r 1 \Phi = 2\cdot s =2 \sqrt{r_1\cdot r_2+r_2\cdot r_3+r_3\cdot r_1 }

Putting the values we get, Φ = 40 10 Φ = 400 \Phi=40 \implies \boxed{10\Phi=400}

Ramiel To-ong
Sep 11, 2015

SAME analysis

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...