x x x . . .
A jerk is defined to be the third derivative of a position. Let f ( x ) denote the function of the infinite power tower as described above. Evaluate the jerk of this function at x = 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
he third derivative of the function listed at x = 1 is equal to 9.
what are you saying hadia ???
Log in to reply
First of all. It's important to define the limit "x^x^x^x^..." precisely, for there are ambiguities. For instance (3^3)^3=27^3=3^9 =\= 3^27=3^(3^3) Adopting the first interpretation: x^x^x^x^...=lim exp(x^n.logx)=1, if x<=1 (and diverges, if x>1).
First of all. It's important to define the limit "x^x^x^x^..." precisely, for there are ambiguities. For instance (3^3)^3=27^3=3^9 =\= 3^27=3^(3^3) Adopting the first interpretation: x^x^x^x^...=lim exp(x^n.logx)=1, if x<=1 (and diverges, if x>1). This derivative should be 0 at 1, therefore.
Nope. There is no ambiguities. You should always perform the operations from the top to bottom. See this .
Log in to reply
Sorry, Im just a teenager
Log in to reply
No need to apologize. =D
Problem Loading...
Note Loading...
Set Loading...
y = x y ⇒ l n y = y l n x d i f f e r e n t i a t i n g w . r . t x ⇒ y y 1 = y 1 l n x + x y ⇒ y 1 = y 1 ( y l n x ) + x y 2 = y 1 l n y + x y 2 . . . ( i ) d i f f e r e n t i a t e a g a i n , ⇒ y 2 = y 2 l n y + y ( y 1 ) 2 + x 2 2 x y y 1 − y 2 . . . ( i i ) d i f f e r e n t i a t e a g a i n , ⇒ y 3 = ( y 3 l n y + y 2 y y 1 ) + y 2 2 y y 1 y 2 − ( y 1 ) 3 + ( x 2 ) 2 x 2 { 2 y y 1 + 2 x ( y 1 ) 2 + 2 x y y 2 − 2 y y 1 } − 2 x ( 2 x y y 1 − y 2 ) . . . ( i i i ) i f x = 1 ⇒ y ( 1 ) = 1 B y e q n ( i ) , y 1 ( 1 ) = y 1 ( 1 ) l n 1 + 1 1 2 = 1 B y e q n ( i i ) , y 2 ( 1 ) = y 2 ( 1 ) l n 1 + 1 ( 1 ) 2 + 1 2 2 × 1 × 1 × 1 − 1 2 = 2 B y e q n ( i i ) , y 3 ( 1 ) = ( y 3 ( 1 ) l n 1 + 2 × 1 1 ) + 1 2 2 × 1 × 1 × 2 − ( 1 ) 3 + ( 1 2 ) 2 1 2 { 2 × 1 × 1 + 2 × 1 × 1 2 + 2 × 1 × 1 × 2 − 2 × 1 × 1 } − 2 × 1 ( 2 × 1 × 1 × 1 − 1 2 ) = 2 + 1 4 − 1 + 1 ( 2 + 2 + 4 − 2 ) − 2 ( 2 − 1 ) = 9