A number theory problem by Aly Ahmed

Find the remainder when 202 0 202 1 2022 2020^{2021^{2022}} is divided by 11 11 .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the given number be N N . We need to find N m o d 11 N \bmod 11 . Since gcd ( 2020 , 11 ) = 1 \gcd(2020,11)=1 , we can apply Euler's theorem , and Euler's totient function ϕ ( 11 ) = 11 1 = 10 \phi(11)=11-1=10 .

N 202 0 202 1 2022 m o d ϕ ( 11 ) (mod 11) 202 0 202 1 2022 m o d 10 (mod 11) 202 0 ( 2020 + 1 ) 2022 m o d 10 (mod 11) 202 0 1 2022 m o d 10 (mod 11) 202 0 1 (mod 11) 7 (mod 11) \begin{aligned} N & \equiv 2020^{2021^{2022}\bmod \phi(11)} \text{ (mod 11)} \\ & \equiv 2020^{2021^{2022}\bmod 10} \text{ (mod 11)} \\ & \equiv 2020^{(2020+1)^{2022}\bmod 10} \text{ (mod 11)} \\ & \equiv 2020^{1^{2022}\bmod 10} \text{ (mod 11)} \\ & \equiv 2020^1 \text{ (mod 11)} \\ & \equiv \boxed 7 \text{ (mod 11)} \end{aligned}

2020 7 2020\equiv 7 (mod 11 11 ). So the given congruence is equivalent to

7 202 1 2022 7^{2021^{2022}} (mod 11 11 ).

Now, for any positive integers n , p ; 7 n 7 10 p + n n, p; 7^n\equiv 7^{10p+n} (mod 11 11 ).

202 1 2022 1 2021^{2022}\equiv 1 (mod 10 10 )

Therefore 202 0 202 1 2022 7 1 = 7 2020^{2021^{2022}}\equiv 7^1=\boxed 7 (mod 11 11 ).

  • is there a link to proof of 1st statement
  • Is the power cycle of 7, ten?
  • And how did you deduce 202 1 2022 2021^{2022} is 1 mod 10
Thank you for answering in advance. Take care!

Mahdi Raza - 1 year ago

Log in to reply

  1. Just manually do long division.
  2. See Modular arithmetic - exponentiation .
  3. See Fermat's little theorem . Or just 202 1 k = ( 2020 + 1 ) k = ( 202 × 10 + 1 ) k 2021^k = (2020 + 1)^k = (202 \times 10 + 1)^k ....

Pi Han Goh - 1 year ago

Log in to reply

  1. I meant to say: why does 7 202 1 2022 = 202 0 202 1 2022 m o d 11 7^{2021^{2022}} = 2020^{2021^{2022}} \mod 11
  2. Ok, thanks
  3. Sure, will check it out

Mahdi Raza - 1 year ago

Log in to reply

@Mahdi Raza For 1. see the link in (2).

Pi Han Goh - 1 year ago

Log in to reply

@Pi Han Goh Ok, Thank you for your help @Pi Han Goh sir!

Mahdi Raza - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...