Angles satisfy this sole equation!

Geometry Level 3

1 + 4 cos A cos B cos C = cos A + cos B + cos C 1+4\cos A \cos B \cos C= \cos A+\cos B+\cos C

If the 3 angles of A B C \triangle ABC satisfy the equation above, what type of triangle is A B C ? \triangle ABC?

Acute triangle Obtuse triangle Isosceles right triangle Isosceles triangle Equilateral triangle

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P C
Jan 6, 2017

First, we do some manipulation for the L H S LHS L H S = 1 + 2 [ c o s ( A + B ) + c o s ( A B ) ] c o s C = 1 2 c o s 2 C 2 c o s ( A + B ) c o s ( A B ) = 2 c o s 2 A 2 c o s 2 B 2 c o s 2 C LHS=1+2[cos(A+B)+cos(A-B)]cosC = 1-2cos^2C-2cos(A+B)cos(A-B)=-2cos2A - 2cos2B-2cos2C For the R H S RHS , we prove this following inequality c o s A + c o s B + c o s C 3 2 cosA+cosB+cosC\leq\frac{3}{2} We have c o s A + c o s B + c o s C = 2 c o s 2 ( A + B 2 ) + 2 c o s ( A B 2 ) c o s ( A + B 2 ) + 1 cosA+cosB+cosC=-2cos^2\big(\frac{A+B}{2}\big)+2cos\big(\frac{A-B}{2}\big)cos\big(\frac{A+B}{2}\big)+1 , so by setting t = c o s ( A + B 2 ) t=cos\big(\frac{A+B}{2}\big) , we'll get f ( t ) = 2 t 2 + 2 c o s ( A B 2 ) t + 1 c o s 2 ( A B 2 ) + 2 2 3 2 f(t)=-2t^2+2cos\bigg(\frac{A-B}{2}\bigg)t+1\leq\frac{cos^2\big(\frac{A-B}{2}\big)+2}{2}\leq\frac{3}{2} R H S = L H S 3 2 \therefore RHS=LHS\leq\frac{3}{2} 2 ( c o s 2 A + c o s 2 B + c o s 2 C ) 3 2 \Leftrightarrow -2(cos2A+cos2B+cos2C)\leq\frac{3}{2} Through some manipulation, we'll get the above inequality as c o s 2 A + c o s 2 B + c o s 2 C 3 4 ( 2 ) cos^2A+cos^2B+cos^2C\geq\frac{3}{4} \ (2) . So for the finishing touch, we need to prove c o s 2 A + c o s 2 B + c o s 2 C 3 4 cos^2A+cos^2B+cos^2C\leq\frac{3}{4} Without losing generality, we assume that A B C A\geq B\geq C , then we'll have C 6 0 C\leq 60^{\circ} and A + B 12 0 A+B\geq 120^{\circ} . Now for the LHS c o s 2 A + c o s 2 B + c o s 2 C = c o s 2 ( A + B ) + c o s ( A B ) c o s ( A + B ) + 1 cos^2A+cos^2B+cos^2C=cos^2(A+B)+cos(A-B)cos(A+B)+1 Since A + B 12 0 A+B\geq 120^{\circ} , c o s ( A + B ) 1 2 cos(A+B)\leq\frac{-1}{2} , applying this to the L H S LHS c o s 2 ( A + B ) + c o s ( A B ) c o s ( A + B ) + 1 c o s 2 ( A + B ) + c o s ( A + B ) + 1 1 4 1 2 + 1 = 3 4 cos^2(A+B)+cos(A-B)cos(A+B)+1\leq cos^2(A+B)+cos(A+B)+1\leq \frac{1}{4}-\frac{1}{2}+1=\frac{3}{4} So (2) only happens when { A + B = 12 0 A B = 0 A + B + C = 18 0 \begin{cases} A+B=120^{\circ} \\ A-B=0^{\circ} \\ A+B+C=180^{\circ}\end{cases} , therefore A = B = C A=B=C and we obtain the equilateral triangle

Atomsky Jahid
Jan 6, 2017

L H S = 1 + 4 c o s A c o s B c o s C LHS=1+4cosAcosBcosC = 1 + 2 ( c o s ( A B ) + c o s ( A + B ) ) c o s C =1+2(cos(A-B)+cos(A+B))cosC = 1 + 2 c o s ( A B ) c o s C + 2 c o s ( A + B ) c o s C =1+2cos(A-B)cosC+2cos(A+B)cosC = 1 + c o s ( A B C ) + c o s ( A B + C ) + c o s ( A + B C ) + c o s ( A + B + C ) =1+cos(A-B-C)+cos(A-B+C)+cos(A+B-C)+cos(A+B+C) But, c o s ( A + B + C ) = c o s π = 1 cos(A+B+C)=cos\pi=-1 So, L H S = c o s ( A + B C ) + c o s ( B + C A ) + c o s ( C + A B ) LHS=cos(A+B-C)+cos(B+C-A)+cos(C+A-B) Now, this left hand side can be equal to the right hand side (which is c o s A + c o s B + c o s C cosA+cosB+cosC ) if we set, A = B = C A=B=C . Hence, the triangle is equilateral.

P.S. There's another way it seems! L H S = A , B , C c y c c o s ( A + B C ) = A , B , C c y c c o s ( A + B + C 2 C ) LHS=\sum\limits_{A,B,C}^{cyc} cos(A+B-C)=\sum\limits_{A,B,C}^{cyc} cos(A+B+C-2C) = A , B , C c o s ( π 2 C ) = A , B , C ( c o s ( 2 C ) ) =\sum\limits_{A,B,C} cos(\pi-2C)=\sum\limits_{A,B,C} (-cos(2C)) = A , B , C ( 1 2 c o s 2 C ) =\sum\limits_{A,B,C} (1-2cos^2 C) We can then set each term on the LHS equal to the corresponding term on the RHS. 1 2 c o s 2 C = c o s C 1-2cos^2 C=cos C Solving the above equation gives us C = π 3 C=\frac{\pi}{3} . Similarly, A = B = π 3 A=B=\frac{\pi}{3} .

Nice solution, but it's better to show that A = B = C A=B=C is the only case to have the equality than the setting method.

P C - 4 years, 5 months ago

Log in to reply

Yes, my solution was not rigorous. I couldn't find any other way to make the two sides equal. But, proving that there's no other way is another thing.

Atomsky Jahid - 4 years, 5 months ago

Log in to reply

I've posted my solution, you can check it out.

P C - 4 years, 5 months ago

Log in to reply

@P C Tried to polish my solution a little bit. But, it seems you've posted a rigorous one. :)

Atomsky Jahid - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...