There Is No Exact Form, Right?

Calculus Level 5

Given

34 × 0 π ( sin x ) 3 2 + 3 d x 0 π / 2 ( cos x ) 3 2 3 d x = a 2 + b 34 \times \frac {\displaystyle{ \int_0^{\pi} (\sin x)^{3\sqrt{2} + 3} dx} }{ \displaystyle{\int_0^{\pi /2} (\cos x)^{3\sqrt{2} - 3} dx }} = a \sqrt{2} + b

for integers a a and b , b, find the value of a + b . a+b.


The answer is 56.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Jan 29, 2014

For the numerator, we split the integral from 0 0 to π 2 \frac {\pi}{2} and from π 2 \frac {\pi}{2} to π \pi

0 π 2 ( sin x ) 3 2 + 3 d x + π 2 π ( sin x ) 3 2 + 3 d x \displaystyle \int_0^{\frac {\pi}{2}} (\sin x)^{ 3 \sqrt 2 + 3 } \mathrm{d}x + \int_{\frac {\pi}{2}}^\pi (\sin x)^{ 3 \sqrt 2 + 3 } \mathrm{d}x

For the second integral (on the numerator), we let y = x π 2 y = x - \frac {\pi}{2} , which equals to the first integral

For the integral in the denominator, we let z = π 2 x z = \frac {\pi}{2} - x , simplify everything, we get

68 × 0 π 2 ( sin x ) 3 2 + 3 d x 0 π 2 ( sin x ) 3 2 3 d x \large \displaystyle 68 \times \frac { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 + 3} \mathrm{d} x } { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 - 3} \mathrm{d} x }

Reduction formula, for m 2 m \geq 2

( sin x ) m d x = m 1 m ( sin x ) m 1 cos x + m 1 m ( sin x ) m 2 d x \displaystyle \int ( \sin x)^m \mathrm{d}x = - \frac {m-1}{m} \cdot (\sin x)^{m-1} \cdot \cos x + \frac {m-1}{m} \cdot \int ( \sin x)^{m-2} \mathrm{d}x

Set the limits 0 0 to π 2 \frac {\pi}{2}

0 π 2 ( sin x ) m d x = m 1 m 0 π 2 ( sin x ) m 2 d x \displaystyle \int_0^{\frac {\pi}{2}} ( \sin x)^m \mathrm{d}x = \frac {m-1}{m} \cdot \int_0^{\frac {\pi}{2}} ( \sin x)^{m-2} \mathrm{d}x

Evaluate

68 × 0 π 2 ( sin x ) 3 2 + 3 d x 0 π 2 ( sin x ) 3 2 3 d x = 68 × 0 π 2 ( sin x ) 3 2 + 3 d x 0 π 2 ( sin x ) 3 2 3 d x = 68 × 3 2 + 2 3 2 + 3 × 0 π 2 ( sin x ) 3 2 + 1 d x 0 π 2 ( sin x ) 3 2 3 d x = 68 × 3 2 + 2 3 2 + 3 × 3 2 3 2 + 1 × 0 π 2 ( sin x ) 3 2 1 d x 0 π 2 ( sin x ) 3 2 3 d x = 68 × 3 2 + 2 3 2 + 3 × 3 2 3 2 + 1 × 3 2 2 3 2 1 × 0 π 2 ( sin x ) 3 2 3 d x 0 π 2 ( sin x ) 3 2 3 d x = 68 × 3 2 + 2 3 2 + 3 × 3 2 3 2 + 1 × 3 2 2 3 2 1 = 56 2 + 112 \begin{aligned} \large \displaystyle 68 \times \frac { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 + 3} \mathrm{d} x } { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 - 3} \mathrm{d} x } & = & 68 \times \frac { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 + 3} \mathrm{d} x } { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 - 3} \mathrm{d} x } \\ & = & 68 \times \frac {3 \sqrt2 + 2}{3 \sqrt2 + 3} \times \frac { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 + 1} \mathrm{d} x } { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 - 3} \mathrm{d} x } \\ & = & 68 \times \frac {3 \sqrt2 + 2}{3 \sqrt2 + 3} \times \frac {3 \sqrt2}{3 \sqrt2 + 1} \times \frac { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 - 1} \mathrm{d} x } { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 - 3} \mathrm{d} x } \\ & = & 68 \times \frac {3 \sqrt2 + 2}{3 \sqrt2 + 3} \times \frac {3 \sqrt2}{3 \sqrt2 + 1} \times \frac {3 \sqrt2 - 2}{3 \sqrt2 - 1} \times \frac { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 - 3} \mathrm{d} x } { \int_0^{ \frac {\pi}{2} } (\sin x)^{3 \sqrt2 - 3} \mathrm{d} x } \\ & = & 68 \times \frac {3 \sqrt2 + 2}{3 \sqrt2 + 3} \times \frac {3 \sqrt2}{3 \sqrt2 + 1} \times \frac {3 \sqrt2 - 2}{3 \sqrt2 - 1} \\ & = & -56 \sqrt2 + 112 \\ \end{aligned}

a + b = 56 + 112 = 56 \Rightarrow a + b = -56 + 112 = \boxed{56}

One could have used B e t a Beta and G a m m a Gamma functions as well. Although a nice problem yet again....

Nishant Sharma - 7 years, 4 months ago

That was a nice problem, thanks for sharing Pi Han Goh! :)

Pranav Arora - 7 years, 4 months ago

I did something similar : Change the limits of integration of the numerator to 0 to pi/2 by using the substitution t=x/2 and basically reparametrizing everything so we get sin(t)^sqrt(2) sin(t)^3 cos(t)^6 (If we bring the denominator term to the top). If we use the substitution sin(t)^2 = y and reparametrize in terms of y, we get an expression of the form $Y^(3/sqrt(2)) Y (1-Y)^2.5 . The only problem seems to be the last term which could possible be simplified by expressing it as (1-Y)^5/(1-Y)^2 . But we have avoiding dealing with the sqrt(2) term in the exponent.

Sundar R - 7 years, 4 months ago

Log in to reply

Ok, you did something much simpler. In your expression, you are just left with sin(x)^6 which is definitely integrable. I am assuming that there would be no problems with bringing the expression on top (Diverging entities, infinities, singularities etc). I did think of splitting the integral on top and then changing cos(x) in the denominator to sin(x) through the pi/2 + x substitution but then there seemed to be too many substitutions

Sundar R - 7 years, 4 months ago

Log in to reply

I just realized that the $t^a(1-t)^b dt seems to resemble a special function possibly the beta function of the parameters a and b

Sundar R - 7 years, 4 months ago

Log in to reply

@Sundar R I made a mistake. My sheer carelessness, oversight, overeagerness, instead of representing (1-t)^5/2 as sqrt(1-t)^5 or as (sqrt(1-t))^5 , i suggested dividing (1-t)^5 by (1-t)^2 which would obviously just give (1-t)^3. One possibility is to use the taylor formula for (1-t)^p for real p. The other is to use logarithms inside the integral (assuming it can be justified)(possibly using the orthogonality of the terms etc

Sundar R - 7 years, 4 months ago

"For the second integral (on the numerator), we let y=x-pi/2, which equals to the first integral" Isn't there something wrong? Won't the integrand become cosine instead of sine?

Neil Chua Goy - 7 years, 4 months ago

Log in to reply

Then replace y = π 2 y y' = \frac {\pi}{2} - y , just like the one on the denominator

Pi Han Goh - 7 years, 4 months ago

Log in to reply

if we put z=pi/2-x in denominator it will reduce to sinz not sinx?

Afzal Noor - 7 years, 4 months ago
Aaghaz Mahajan
May 19, 2018

Well, if you don;t remember the reduction formula, use BETA FUNCTIONS!!!!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...