Just another integration problem

Calculus Level 4

π 4 0 cos 2 x + cos x 1 + sin x + cos x d x = ? \large \int_{ - \frac{\pi}{4} }^{0} { \frac { {\cos }^{ 2 }x+\cos x }{ 1+\sin x+\cos x } dx } = \ ?


The answer is 0.8927.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishi Sharma
Aug 17, 2016

Let

I 1 = a x c o s 2 ( t ) + c o s t 1 + s i n t + c o s t d t { I }_{ 1} =\int_{ a }^{ x } { \frac { { cos }^{ 2 }(t)+cost }{ 1+sint+cost } dt } I 2 = a x s i n 2 ( t ) + s i n t 1 + s i n t + c o s t d t { I }_{ 2 }=\int_{ a }^{ x } { \frac { { sin }^{ 2 }(t)+sint }{ 1+sint+cost } dt } Then , I 1 + I 2 = a x s i n 2 ( t ) + s i n x + c o s 2 t + c o s t 1 + s i n t + c o s t d t = a x 1 + s i n t + c o s t 1 + s i n t + c o s t d t = x + c { I }_{ 1 }+{ I }_{ 2 }=\int_{ a }^{ x } { \frac { { sin }^{ 2 }(t)+sinx+{ cos }^{ 2 }t+cost }{ 1+sint+cost } dt } =\int_{ a }^{ x } { \frac { 1+sint+cost }{ 1+sint+cost } dt } =x+c And I 2 I 1 = a x s i n 2 ( t ) + s i n t c o s 2 t c o s t 1 + s i n t + c o s t d x = a x s i n t c o s t 1 d t = s i n x c o s x + c { I }_{ 2 }-{ I }_{ 1 }=\int_{ a }^{ x } { \frac { { sin }^{ 2 }(t)+sint-{ cos }^{ 2 }t-cost }{ 1+sint+cost } dx } =\int_{ a }^{ x } { \frac { sint-cost }{ 1 } dt } =-sinx-cosx+c

Solving the two equations for I 1 { I }_{ 1 } and I 2 { I }_{2 } . We get I 1 = 1 2 ( x + s i n x + c o s x ) + C = f ( x ) { I }_{ 1 }=\frac { 1 }{ 2 } \left( x+sinx+cosx \right) +C = f\left( x\right) Using f ( 0 ) = 1 2 + π 8 f\left( 0\right)=\frac{1}{2}+\frac{\pi}{8} . We get f ( π 4 ) = 0 f\left( \frac{-\pi}{4} \right) = \boxed{0}

The value of f(0) is not matched.

What you said in the question and used in the slution is different.

Kushal Bose - 4 years, 10 months ago

Log in to reply

What do you mean. I don't get it.

Rishi Sharma - 4 years, 10 months ago

Log in to reply

in the question you have stated that f(0)=1/2 +pi/2

but in the solution u have used f(0)=1/2 +pi/8

Kushal Bose - 4 years, 10 months ago

Log in to reply

@Kushal Bose changed it

Rishi Sharma - 4 years, 10 months ago

Rishi, this question is unnecessarily complicated. I would prefer that you simply asked for π 4 0 \in_{ - \frac{ \pi }{4} } ^ 0 directly, instead of having people attempt to figure out what you are asking for.

Calvin Lin Staff - 4 years, 10 months ago

Log in to reply

@Rishi Sharma I've updated the question. Can you update your solution accordingly? Thanks.

Calvin Lin Staff - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...