What's the Altitude?

Geometry Level 4

In square A B C D ABCD , A F AF bisects E A D \angle EAD , B E = 36 BE=36 , and D F = 64 DF=64 . If the altitude of A E F \triangle{AEF} can be represented by

d = a b c d d = \frac{a}{\sqrt{b - c\sqrt{d^{*}}}}

where a a , b b , c c , and d d^{*} are coprime positive integers, find a + b + c + d a + b + c + d^{*} .


The answer is 419.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 22, 2020

Let the side length of square A B C D ABCD be a a . Then tan θ = 64 a \tan \theta = \dfrac {64}a and

tan ( 9 0 2 θ ) = cot 2 θ = 1 tan 2 θ = 36 a 1 tan 2 θ 2 tan θ = 36 a 1 ( 64 a ) 2 2 × 64 a = 36 a 1 6 4 2 a 2 = 2 × 64 × 36 a 2 a 2 = 8704 a = 16 34 \begin{aligned} \tan (90^\circ - 2\theta) & = \cot 2\theta = \frac 1 {\tan 2\theta} = \frac {36}a \\ \frac {1-\tan^2 \theta}{2 \tan \theta} & = \frac {36}a \\ \frac {1-\left(\frac {64}a\right)^2}{2 \times \frac {64}a} & = \frac {36}a \\ 1 - \frac {64^2}{a^2} & = \frac {2 \times 64\times 36}{a^2} \\ \implies a^2 & = 8704 \\ a & = 16\sqrt{34} \end{aligned}

The area of A E F \triangle AEF :

[ A E F ] = a 2 ( 64 a 2 + 36 a 2 + ( a 64 ) ( a 36 ) 2 ) = a 2 ( a 2 2 + 1152 ) = a 2 2 1152 = 8704 2 1152 = 3200 \begin{aligned} [AEF] & = a^2 - \left(\frac {64a}2 + \frac {36a}2 + \frac {(a-64)(a-36)}2 \right) \\ & = a^2 - \left(\frac {a^2}2 + 1152\right) \\ & = \frac {a^2}2 - 1152 = \frac {8704}2 - 1152 = \boxed{3200} \end{aligned}

The length of E F EF is ( a 64 ) 2 + ( a 36 ) 2 = 20 57 8 34 \sqrt{(a-64)^2 + (a-36)^2} = 20\sqrt{57-8\sqrt{34}} and the altitude of A E F \triangle AEF , d = 3200 × 2 20 57 8 34 = 320 57 8 34 d = \dfrac {3200 \times 2}{20\sqrt{57-8\sqrt{34}}} = \dfrac {320}{\sqrt{57-8\sqrt{34}}} . Therefore, a + b + c + d = 320 + 57 + 8 + 34 = 419 a+b+c + d* = 320 + 57 + 8 + 34 = \boxed{419} .

Area of A E F \triangle {AEF} is 3200 3200 . Length of side E F \overline {EF} is ( 36 8704 ) 2 + ( 8704 64 ) 2 = 20 57 8 34 \sqrt {(36-\sqrt {8704})^2+(\sqrt {8704}-64)^2}=20\sqrt {57-8\sqrt {34}} . So the altitude is given by d = 320 57 8 34 d=\dfrac{320}{\sqrt {57-8\sqrt {34}}} . Therefore, a = 320 , b = 57 , c = 8 , d = 34 a=320, b=57, c=8, d=34 and a + b + c + d = 419 a+b+c+d=\boxed {419}

Rocco Dalto
Feb 21, 2020

In square A B C D ABCD let A B = x AB = x \implies

A E = x 2 + 3 6 2 AE = \sqrt{x^2 + 36^2} , A F = x 2 + 6 4 2 AF = \sqrt{x^2 + 64^2} and sin ( 2 θ ) = x x 2 + 3 6 2 = 2 sin ( θ ) cos ( θ ) \sin(2\theta) = \dfrac{x}{\sqrt{x^2 + 36^2}} = 2\sin(\theta)\cos(\theta) , where sin ( θ ) = 64 x 2 + 6 4 2 \sin(\theta) = \dfrac{64}{\sqrt{x^2 + 64^2}}

and cos ( θ ) = x x 2 + 6 4 2 \cos(\theta) = \dfrac{x}{\sqrt{x^2 + 64^2}}

sin ( 2 θ ) = x x 2 = 3 6 2 = 2 sin ( θ ) cos ( θ ) = 128 x x 2 + 6 4 2 \implies \sin(2\theta) = \dfrac{x}{\sqrt{x^2 = 36^2}} = 2\sin(\theta)\cos(\theta) = \dfrac{128x}{x^2 + 64^2}

128 x 2 + 3 6 2 = x 2 + 6 4 2 x 4 2 6 4 2 x 2 6 4 2 8 2 17 = 0 \implies 128\sqrt{x^2 + 36^2} = x^2 + 64^2 \implies x^4 - 2 * 64^2 x^2 - 64^2 * 8^2 * 17 = 0

x 2 = 4096 ± 4608 \implies x^2 = 4096 \pm 4608

Choosing the positive real root x = 8704 = 16 34 \implies x = \sqrt{8704} = 16\sqrt{34}

To find the distance d d :

U = ( 8704 36 ) i + ( 64 8704 ) j + 0 k \vec{U} = (\sqrt{8704} - 36)\vec{i} + (64 - \sqrt{8704})\vec{j} + 0\vec{k}

V = 8704 i + 64 j + 0 k \vec{V} = \sqrt{8704} \:\ \vec{i} + 64\vec{j} + 0\vec{k}

U X V = 64 8704 2304 64 8704 + 8704 = 6400 \implies |\vec{U} X \vec{V}| = |64\sqrt{8704} - 2304 - 64\sqrt{8704} + 8704| = 6400

and U = 4 ( 4 34 9 ) 2 + ( 16 4 34 ) 2 = 20 57 8 34 \vec{U} = 4\sqrt{(4\sqrt{34} - 9)^2 + (16 - 4\sqrt{34})^2} = 20\sqrt{57 - 8\sqrt{34}}

d = 320 57 8 34 = a b c d \implies d = \dfrac{320}{\sqrt{57 - 8\sqrt{34}}} = \dfrac{a}{\sqrt{b - c\sqrt{d^{*}}}} \implies a + b + c + d = 419 a + b + c + d^{*} = \boxed{419} .

@Rocco Dalto , you have used d d on both sides of the equation d = a b c d \red d = \dfrac a{\sqrt{b-c\sqrt{\red d}}} , but they are of different values.

Chew-Seong Cheong - 1 year, 3 months ago

Log in to reply

Thanks. I didn't realize it. I changed it.

Rocco Dalto - 1 year, 3 months ago

@Rocco Dalto Do you any recommendation for some book on 3D geometry or nD geometry, I am not used to with it... I like the questions that you give on 3D geometry but I do not have any clue how to do it.

Nikola Alfredi - 1 year, 3 months ago

Log in to reply

I have my college math textbooks, but they were from the early 80's. haven't been to a bookstore in forty years. I recommend looking for a textbook on vector calculus and possibly linear algebra. You could also look online for 3d geometry. You could also play around with geogebra 3D.

Rocco Dalto - 1 year, 3 months ago

Log in to reply

Thank you very much.

Nikola Alfredi - 1 year, 3 months ago

Log in to reply

@Nikola Alfredi No problem.

Rocco Dalto - 1 year, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...