What's x/y?

Algebra Level 3

12 + 2 15 + 4 5 + 4 3 = x + y + 3 \sqrt{12 + 2\sqrt{15} + 4 \sqrt{5} + 4 \sqrt{3}} = x + \sqrt{y} + \sqrt{3}

If x x and y y are positive integers that satisfy the above equation, then find the value of x y \dfrac{x}{y} .


The answer is 0.4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 18, 2016

x + y + 3 = 12 + 2 15 + 4 5 + 4 3 Squaring both sides x 2 + y + 3 + 2 x y + 2 3 y + 2 x 3 = 12 + 2 15 + 4 5 + 4 3 \begin{aligned} x + \sqrt{y} + \sqrt{3} & = \sqrt{12 + 2\sqrt{15} + 4 \sqrt{5} + 4 \sqrt{3}} \quad \quad \small \color{#3D99F6}{\text{Squaring both sides}} \\ x^2 + y + 3 + 2x\sqrt{y} + 2\sqrt{\color{#3D99F6}{3y}} + \color{#D61F06}{2x}\sqrt{3} & = 12 + 2\sqrt{\color{#3D99F6}{15}} + 4 \sqrt{5} + \color{#D61F06}{4} \sqrt{3} \end{aligned}

Equating coefficients, we have:

{ 2 x = 4 x = 2 3 y = 15 y = 5 \begin{cases} \color{#D61F06}{2x = 4} & \Rightarrow \color{#D61F06}{x = 2} \\ \color{#3D99F6}{3y = 15} & \Rightarrow \color{#3D99F6}{y = 5} \end{cases}

x y = 0.4 \Rightarrow \dfrac{x}{y} = \boxed{0.4}

In such type of questions your main aim is to remove square root.

12 + 2 15 + 4 5 + 4 3 \sqrt{12+2\sqrt{15}+4\sqrt{5}+4\sqrt{3}}

4 + 5 + 3 + 2 ( 2 5 + 15 + 2 3 ) \sqrt{4+5+3+2(2\sqrt{5}+\sqrt{15}+2\sqrt{3})}

( 2 + 5 + 3 ) 2 \sqrt{(2+\sqrt{5}+\sqrt{3})^2}

2 + 5 + 3 2+\sqrt{5}+\sqrt{3}

On comparing with x + y + 3 x+\sqrt{y}+\sqrt{3} .

We get x = 2 x=2 and y = 5 y=5 .

x y = 2 5 = 0.4 \therefore \dfrac{x}{y}=\dfrac{2}{5}=\boxed{0.4}

Atul Shivam
Apr 18, 2016

Hint: transform LHS into a complete square

Try this similar version :p

Atul Shivam - 5 years, 1 month ago

Log in to reply

Use (a+b+c)^2.

Abhiram Rao - 5 years, 1 month ago

Log in to reply

solved it?

Atul Shivam - 5 years, 1 month ago

Log in to reply

@Atul Shivam Your problem's also good . :D

Abhiram Rao - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...