When will the holidays come 1

Algebra Level 5

If 1 , α 1 , α 2 , α 3 , α 4 1,\alpha_1,\alpha_2,\alpha_3,\alpha_4 are fifth roots of unity, and

i = 1 4 1 2 α i = a b \displaystyle\sum_{i=1}^4 \dfrac{1}{2-\alpha_i}=\dfrac{a}{b}

Where a a and b b are coprime integers then find a b a-b .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Otto Bretscher
Oct 17, 2015

We can derive the formula w 1 a w = n a n 1 a n 1 \sum_{w}\frac{1}{a-w}=\frac{na^{n-1}}{a^n-1} for the n n th roots of unity w w , where a a fails to be an n n th root of unity. Let n = 5 n=5 and a = 2 a=2 to obtain the required value 18 \boxed{18} (subtract 1 since the problem starts the count at k = 1 k=1 )


To derive the formula, we make the substitution x = 1 a w x=\frac{1}{a-w} or w = a x 1 x w=\frac{ax-1}{x} . Then w n = 1 w^n=1 gives ( a x 1 ) n = x n (ax-1)^n=x^n or ( a n 1 ) x n n a n 1 x n 1 + . . . = 0 (a^n-1)x^n-na^{n-1}x^{n-1}+...=0 , and our formula follows from Viete's rule, by finding the sum of roots of the transformed equation.

Moderator note:

Great way of obtaining the (general) formula. I do have a preference for transforming the roots of the equation as a way of evaluating such sums, since it tends to be much more direct and there is fewer "forcing" of manipulations.

I think this general formula wont work when a=1, @Otto Bretscher

Sanchit Aggarwal - 5 years, 7 months ago

Log in to reply

That's why I'm saying "where a a fails to be a root of unity." For roots of unity, including 1, both sides of the equation are undefined.

Otto Bretscher - 5 years, 7 months ago

Log in to reply

Oh right. Missed it. Actually I solved the same question with a=1 instead of 2 which took a long time since this method was not applicable and had to resort to calculus.

Sanchit Aggarwal - 5 years, 7 months ago

Log in to reply

@Sanchit Aggarwal In the case a = 1 a=1 , you can substitute w = x 1 x w=\frac{x-1}{x} into w n 1 + w n 2 + . . . . + w + 1 w^{n-1}+w^{n-2}+....+w+1 to find n x n 1 n ( n 1 ) 2 x n 2 . . . nx^{n-1}-\frac{n(n-1)}{2}x^{n-2}... , and the sum (excluding w = 1 w=1 ) will be n 1 2 \frac{n-1}{2} .

Otto Bretscher - 5 years, 7 months ago

Simple & elegant......love it, Sir Otto!!

tom engelsman - 1 year, 4 months ago
Adarsh Kumar
Oct 15, 2015

We have that, f ( x ) = x 5 1 = ( x 1 ) ( i = 1 4 ( x α i ) ) ln ( f ( x ) ) = ln ( x 1 ) + i = 1 4 ( ln ( x α i ) ) d d x ln ( f ( x ) ) = 1 x 1 + i = 1 4 ( 1 x α i ) 1 f ( x ) × f ( x ) = 1 x 1 + i = 1 4 ( 1 x α i ) f(x)=x^5-1=(x-1)(\prod_{i=1}^{4}(x-\alpha_{i}))\\ \Longrightarrow \ln(f(x))=\ln(x-1)+\sum_{i=1}^{4}(\ln(x-\alpha_{i}))\\ \Longrightarrow \dfrac{d}{dx}\ln(f(x))=\dfrac{1}{x-1}+\sum_{i=1}^{4}(\dfrac{1}{x-\alpha_{i}})\\ \Longrightarrow \dfrac{1}{f(x)} \times f^{'}(x)=\dfrac{1}{x-1}+\sum_{i=1}^{4}(\dfrac{1}{x-\alpha_{i}}) Now,just put x = 2 x=2 , 1 f ( 2 ) × f ( 2 ) = 1 + Required expression f ( 2 ) = 31 , f ( x ) = 5 x 4 = 80 Required expression = 80 31 1 = 49 31 Answer = 18 \dfrac{1}{f(2)}\times f^{'}(2)=1+\text{Required expression}\\ f(2)=31,f^{'}(x)=5x^4=80\\ \Longrightarrow \text{Required expression}=\dfrac{80}{31}-1=\dfrac{49}{31}\\ \Longrightarrow \text{Answer}=18 And done!

Moderator note:

That is a reasonable approach. However, do you know to what extent your manipulations are valid for complex numbers? IE Could we take log i \log i and get a single value?

Well, this sure is one complicated way of doing things. But nice solution nonetheless.

Trevor Arashiro - 5 years, 7 months ago

L e t θ = 2 π 5 . α n = e i 2 π 5 n = C o s ( θ n ) + i S i n ( θ n ) . . . n = 1 , 2 , 3 , 4 C o s ( θ 4 ) = C o s ( θ 4 ) = C o s ( θ 1 ) = 5 1 4 . C o s ( θ 3 ) = C o s ( θ 3 ) = C o s ( θ 2 ) = 5 + 1 4 . S i n ( θ 1 ) + S i n ( θ 4 ) = 0. S i n ( θ 2 ) + S i n ( θ 3 ) = 0. 1 2 α n = 1 2 ( C o s ( θ n ) + i S i n ( θ n ) ) R a t i o n a l i z i n g , = ( 2 C o s ( θ n ) ) i S i n ( θ n ) ( 2 C o s ( θ n ) ) 2 ( i S i n θ n ) 2 = ( 2 C o s ( θ n ) ) i S i n ( θ n ) 5 4 C o s ( θ n ) 1 2 α 1 = 1 2 ( C o s ( θ 1 ) + i S i n ( θ 1 ) ) = ( 2 5 1 4 ) i S i n ( θ 1 ) 5 4 5 1 4 = 9 5 4 i S i n ( θ 1 ) 6 5 1 2 α 4 = 1 2 ( C o s ( θ 4 ) + i S i n ( θ 4 ) ) = ( 2 5 1 4 ) i S i n ( θ 4 ) 5 4 5 1 4 = 9 5 4 i S i n ( θ 4 ) 6 5 1 2 α 1 + 1 2 α 4 = 9 5 4 i S i n ( θ 1 ) + 9 5 4 i S i n ( θ 4 ) 6 5 = 1 2 { 9 5 6 5 } S i m i l a r l y 1 2 α 2 + 1 2 α 3 = 2 2 ( 5 + 1 4 ) 5 { ( 5 + 1 ) } = 1 2 9 + 5 6 + 5 . n = 1 4 1 2 α n = 1 2 { 9 5 6 5 + 9 + 5 6 + 5 } = 1 2 { 54 5 3 5 + 54 5 + 3 5 36 5 } = 49 31 = a b . a b = 18. Let~~\theta=\dfrac {2\pi} 5.~~~\therefore~~\displaystyle \alpha_n={\huge e}^{i*\dfrac{2\pi} 5*n}=Cos(\theta*n)+iSin(\theta*n)...n=1, 2, 3, 4\\ Cos(\theta *4)=Cos(-\theta*4)=Cos(\theta*1) =\dfrac{\sqrt5-1} 4.\\ Cos(\theta*3)=Cos(-\theta*3)=Cos(\theta*2) =\color{#3D99F6}{-}\dfrac{\sqrt5+1} 4.\\ Sin(\theta*1) + Sin(\theta*4)=0. ~~~~~Sin(\theta*2) + Sin(\theta*3)=0. \\ \dfrac 1 {2-\alpha_n}= \dfrac 1 {2-\Big (Cos(\theta*n)+iSin(\theta*n)\Big )}~~~Rationalizing,\\ = \dfrac {(2-Cos(\theta*n))-iSin(\theta*n)}{(2-Cos(\theta*n))^2-(iSin\theta*n)^2 }= \dfrac {(2-Cos(\theta*n))-iSin(\theta*n)}{5-4*Cos(\theta*n) } \\ \therefore~ \dfrac 1 {2-\alpha_1} = \dfrac 1 {2-(Cos(\theta*1)+iSin(\theta*1))}= \dfrac {(2-\dfrac{\sqrt5-1} 4) - iSin(\theta*1)}{5-4*\dfrac{\sqrt5-1} 4} \\ = \dfrac {\dfrac{ 9 -\sqrt5} 4-iSin(\theta*1)}{6-\sqrt5} \\ \therefore~\dfrac 1 {2-\alpha_4} = \dfrac 1 {2-(Cos(\theta*4)+iSin(\theta*4))}= \dfrac {(2-\dfrac{\sqrt5-1} 4)-iSin(\theta*4)}{5-4*\dfrac{\sqrt5-1} 4 } \\ = \dfrac { \dfrac{9 - \sqrt5 } 4-iSin(\theta*4)}{6-\sqrt5} \\ \therefore~~ \dfrac 1 {2-\alpha_1} + \dfrac 1 {2-\alpha_4}=\dfrac { \dfrac{ 9 -\sqrt5} 4~~{\color{#3D99F6}{-iSin(\theta*1)} }+\dfrac{ 9 -\sqrt5} 4~~{\color{#3D99F6}{-iSin(\theta*4)}}} {6-\sqrt5} \\ =\frac 1 2 *\Big \{\dfrac{9-\sqrt5}{6-\sqrt5} \Big \} \\ Similarly~~ \dfrac 1 {2-\alpha_2} + \dfrac 1 {2-\alpha_3}= 2 *\dfrac{2-(-\dfrac{\sqrt5+1} 4)}{5-\{-(\sqrt5+1)\}}\\ =\frac 1 2 *\dfrac{9+\sqrt5}{6+\sqrt5}.\\ \therefore~\displaystyle \sum_{n=1}^4 \dfrac 1 {2- \alpha_n}=\frac 1 2 *\Big \{ \dfrac{9-\sqrt5}{6-\sqrt5}+\dfrac{9+\sqrt5}{6+\sqrt5} \Big \}\\ =\frac 1 2 *\Big \{ \dfrac{54-5-3\sqrt5+54-5+3\sqrt5}{36 -5} \Big \} =\dfrac{49}{31}=\dfrac a b .\\ a-b=\huge ~~\color{#D61F06}{18}.

Shivamani Patil
Oct 17, 2015

Let f ( x ) = x 5 1 = ( x 1 ) i = 1 4 ( x a i ) f\left( x \right) ={ x }^{ 5 }-1=\left( x-1 \right) \prod _{ i=1 }^{ 4 }{ \left( x-{ a }_{ i } \right) }

Also,

g ( x ) = f ( x + 2 ) = ( x + 2 ) 5 1 = ( x ( 1 2 ) ) i = 1 4 ( x ( a i 2 ) ) g\left( x \right) =f\left( x+2 \right) ={ (x+2) }^{ 5 }-1=\left( x-(1-2) \right) \prod _{ i=1 }^{ 4 }{ \left( x-({ a }_{ i }-2) \right) }

Therefore,

g ( 1 x ) = ( 1 x + 2 ) 5 1 = ( 1 x ( 1 2 ) ) i = 1 4 ( 1 x ( a i 2 ) ) g\left( \frac { 1 }{ x } \right) ={ (\frac { 1 }{ x } +2) }^{ 5 }-1=\left( \frac { 1 }{ x } -(1-2) \right) \prod _{ i=1 }^{ 4 }{ \left( \frac { 1 }{ x } -({ a }_{ i }-2) \right) }

Now we can see roots of g ( 1 x ) g\left( \frac { 1 }{ x } \right) are 1 , 1 a i 2 -1,\frac { 1 }{ { a }_{ i }-2 } for i = 1 , 2 , 3 , 4 i=1,2,3,4 .

Also,

( 1 x + 2 ) 5 1 = ( 1 + 2 x x ) 5 1 {(\frac{ 1 }{ x }+2) }^{ 5 }-1={ \left( \frac {1+2x}{x} \right) }^{ 5 }-1 = ( 1 + 2 x ) 5 x 5 x 5 =\frac { { \left( 1+2x \right) }^{ 5 }-{ x }^{ 5 } }{ { x }^{ 5 }\\ }

Therefore, g ( 1 x ) = 0 g\left( \frac { 1 }{ x } \right) =0 = ( 1 + 2 x ) 5 x 5 x 5 =\frac { { \left( 1+2x \right) }^{ 5 }-{ x }^{ 5 } }{ { x }^{ 5 }\\ }

( 1 + 2 x ) 5 x 5 = 0 { \Rightarrow \left( 1+2x \right) }^{ 5 }-{ x }^{ 5 }=0

Therefore, g ( 1 x ) = ( 2 5 1 ) x 5 + 5 × 2 4 x 4 + g\left( \frac { 1 }{ x } \right) =({ 2 }^{ 5 }-1){ x }^{ 5 }+5\times { 2 }^{ 4 }{ x }^{ 4 }+ something

So sum of roots of g ( 1 x ) g\left( \frac { 1 }{ x } \right) is 1 + i = 1 4 1 a i 2 = 5 × 2 4 ( 2 5 1 ) = 80 31 -1+\sum _{ i=1 }^{ 4 }{ \frac { 1 }{ { a }_{ i }-2 } }=\frac { -5\times { 2 }^{ 4 } }{ ({ 2 }^{ 5 }-1) } =\frac { -80 }{ 31 }

i = 1 4 1 a i 2 = 49 31 i = 1 4 1 2 a i = 49 31 \Rightarrow \sum _{ i=1 }^{ 4 }{ \frac { 1 }{ { a }_{ i }-2 } } =\frac { -49 }{ 31 } \Rightarrow \sum _{ i=1 }^{ 4 }{ \frac { 1 }{ 2-{ a }_{ i } } } =\frac { 49 }{ 31 }

Therefore, a b = 18 a-b=18 .

Mohtasim Nakib
Oct 27, 2015

All the roots are of the equation x5 – 1 = 0 Σ α = Σ αβ= Σ α βγ =Σ α β γδ= 0 Πα = 1

Let α5 = 1 so, Σ {1/(2- α i)} numerator is, 24 – (α2 + α3 + α4 + α5) 23 +…….. = 5.24 –(α1+ α2 + α3 + α4 + α5) 4.23 +…….. = 5.24 = 80 denominator is, Π(2 - α i) = 2^5 – 1 = 31 as Π (x - α i)=x^5 – 1

so a/b = (80/31) – 1/(2-1) = 49/31 a-b = 49 – 31 = 18

Carlos Victor
Oct 26, 2015

In the original sum was taken x instead of two. Let x be such that x^5-1=0. The sum requested is equal to (4x^3+3x^2+2x+1)(x-1)/(x^5 - 1) with x different from one. For " x = 2", we get the sum equal to 49/31, so a-b=18.

Daniel Remo
Oct 26, 2015

If we note that 1 2 α i = 1 2 \frac{1}{2}|\alpha _{i}|=\frac{1}{2} then we can write

1 2 α i = 1 2 ( 1 + α i 2 + ( α i 2 ) 2 + . . . ) \frac{1}{2-\alpha _{i}}=\frac{1}{2} (1+\frac{\alpha _{i}}{2}+(\frac{\alpha _{i}}{2})^{2}+... )

If we sum the above equation 'column-wise' from i = 1 i=1 to i = 5 i=5 and use that 1 + α 1 + . . . + α 4 = 0 1+\alpha _{1}+...+\alpha _{4}=0 , and that ( α 1 ) 2 = α 2 (\alpha _{1})^{2}=\alpha _{2} , ( α 1 ) 3 = α 3 (\alpha _{1})^{3}=\alpha _{3} , etc. then

1 2 1 + i = 1 4 1 2 α i = 1 2 ( 1 + 5 2 5 + 5 2 10 + . . . ) \frac{1}{2-1}+\sum_{i=1}^4 \frac{1}{2-\alpha _{i}}=\frac{1}{2} (1+\frac{5}{2^{5}}+\frac{5}{2^{10}}+...)

The RHS is a geometric series and hence by summing it and subtracting 1 from both sides we get our desired sum is 49 31 \boxed{\frac{49}{31}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...