Where Did Zeta Come From?

Calculus Level 5

k = 1 2 k ( 2 k + 1 ) ( 2 k + 2 ) ( 2 k + 3 ) ζ ( 2 k + 4 ) 4 2 k + 4 = A B π C D \large\sum _{ k=1 }^{ \infty }{ \dfrac { 2k( 2k+1 ) ( 2k+2 ) ( 2k+3 ) \zeta ( 2k+4 ) }{ { 4 }^{ 2k+4 } } } =A-\dfrac { { B\pi }^{ C } }{ D }

The above equation holds true for positive integers A , B , C A,B,C and D D , where B B and D D are coprime. Find A + B + C + D A+B+C+D .

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 150.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Kumar
May 18, 2016

For x > 1 \left| x \right| >1 , by geometric sum, we have: k = 1 1 x 2 k = 1 x 2 1 = 1 2 ( 1 x 1 1 x + 1 ) \begin{aligned} \sum_{k=1}^\infty\frac1{x^{2k}} &=\frac1{x^2-1}\\ &=\frac12\left(\frac1{x-1}-\frac1{x+1}\right) \end{aligned}

On differentiating it 4 times, we get: k = 1 2 k ( 2 k + 1 ) ( 2 k + 2 ) ( 2 k + 3 ) x 2 k + 4 = 12 ( 1 ( x 1 ) 5 1 ( x + 1 ) 5 ) \sum_{k=1}^\infty\frac{2k(2k+1)(2k+2)(2k+3)}{x^{2k+4}} =12 \left( \frac1{(x-1)^5}-\frac1{(x+1)^5} \right)

Now, coming to our summation, we have: k = 1 2 k ( 2 k + 1 ) ( 2 k + 2 ) ( 2 k + 3 ) ζ ( 2 k + 4 ) 4 2 k + 4 = k = 1 j = 1 2 k ( 2 k + 1 ) ( 2 k + 2 ) ( 2 k + 3 ) ( 4 j ) 2 k + 4 = j = 1 k = 1 2 k ( 2 k + 1 ) ( 2 k + 2 ) ( 2 k + 3 ) ( 4 j ) 2 k + 4 = 12 j = 1 ( 1 ( 4 j 1 ) 5 1 ( 4 j + 1 ) 5 ) = 12 n = 1 ( 1 ) n 1 ( 2 n + 1 ) 5 = 12 n = 0 ( 1 ) n ( 2 n + 1 ) 5 + 12 \begin{aligned} \sum_{k=1}^\infty\frac{2k(2k+1)(2k+2)(2k+3)\zeta(2k+4)}{4^{2k+4}} &=\sum_{k=1}^\infty\sum_{j=1}^\infty\frac{2k(2k+1)(2k+2)(2k+3)}{(4j)^{2k+4}}\\ &=\sum_{j=1}^\infty\sum_{k=1}^\infty\frac{2k(2k+1)(2k+2)(2k+3)}{(4j)^{2k+4}}\\ &=12\sum_{j=1}^\infty\left(\frac1{(4j-1)^5}-\frac1{(4j+1)^5}\right)\\ &=12\sum_{n=1}^\infty\frac{(-1)^{n-1}}{(2n+1)^5}\\ &=-12\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^5}+12 \end{aligned}

The sum we obtained is Dirichlet-Beta function, which is defined as: β ( s ) = n = 0 ( 1 ) n ( 2 n + 1 ) s \beta(s)=\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^s}

We'll use the following recurrence formula to evaluate it: β ( 2 n + 1 ) = k = 1 n ( π 2 / 4 ) k ( 2 k ) ! β ( 2 n 2 k + 1 ) \beta(2n+1) = -\sum_{k=1}^n \frac{(-\pi^2/4)^k}{(2k)!}\;\beta(2n-2k+1) .

Now we can simply evaluate β ( 1 ) = π 4 \beta(1)=\frac{\pi}{4} .

Now, we get β ( 5 ) = 5 π 5 1536 \beta(5)=\frac{5{\pi}^5}{1536} .

Now, plugging it into our main summation, we get: k = 1 2 k ( 2 k + 1 ) ( 2 k + 2 ) ( 2 k + 3 ) ζ ( 2 k + 4 ) 4 ( 2 k + 4 ) = 12 5 π 5 128 \sum _{ k=1 }^{ \infty }{ \frac { 2k\left( 2k+1 \right) \left( 2k+2 \right) \left( 2k+3 \right) \zeta \left( 2k+4 \right) }{ { 4 }^{ \left( 2k+4 \right) } } } =12-\frac { { 5\pi }^{ 5 } }{ 128 }

Here, A = 12 , B = 5 , C = 5 , D = 128 A=12,B=5,C=5,D=128 . Hence, A + B + C + D = 150 \boxed{A+B+C+D=150}

Moderator note:

Great writeup explaining these ideas! Thanks for sharing what you have learnt.

Extremely well written. Thank you!

Pi Han Goh - 5 years ago

Log in to reply

Learnt this from Mark Hennings!

Aditya Kumar - 5 years ago

Log in to reply

He is the best!

Pi Han Goh - 5 years ago

Log in to reply

@Pi Han Goh I doubt whether my solution is right. It has been more than 2 days and no one has solved it. Can you closely verify my solution?

Aditya Kumar - 5 years ago

Log in to reply

@Aditya Kumar It's definitely correct. Just tag Mark Hennings and wait for about 5 minutes and you will see your number of solvers increases by 1.

Pi Han Goh - 5 years ago
Mark Hennings
May 22, 2016

I used a variant of the standard identity k = 1 ζ ( 2 k ) z 2 k = 1 2 ( 1 π z cot π z ) \sum_{k=1}^\infty \zeta(2k)z^{2k} \; = \; \tfrac12 (1 - \pi z \cot\pi z) to note that F ( z ) = k = 1 ζ ( 2 k + 4 ) z 2 k + 3 = 45 15 π 2 z 2 π 4 z 4 45 π z cot π z 90 z F(z) \; = \; \sum_{k=1}^\infty \zeta(2k+4)z^{2k+3} \; =\; \frac{45 - 15 \pi^2 z^2 - \pi^4 z^4 - 45 \pi z \cot\pi z}{90 z} and then calculate the sum as 1 4 5 F ( 1 4 ) = 12 5 128 π 5 \frac{1}{4^5}F''''(\tfrac14) \; = \; 12 - \tfrac{5}{128} \pi^5

I did it the same way except for a slight minor change that k = 1 ζ ( 2 k + 4 ) x 2 k + 4 = 1 2 π x cot ( π x ) 2 x 2 ζ ( 2 ) x 4 ζ ( 4 ) \sum_{k=1}^{\infty}\zeta(2k+4)x^{2k+4}=\frac{1}{2}-\frac{\pi x\cot(\pi x)}{2}-x^2\zeta(2)-x^4\zeta(4)

Rohan Shinde - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...