Very complex Calgebra

Calculus Level 4

lim θ 0 ( 2 n 1 k = 1 n 1 ( cos θ cos ( k π n ) ) ) = ? \large\lim_{\theta \to 0} \left(2^{n-1}\prod_{k = 1}^{n-1}{\left(\cos\theta - \cos\left( \frac{k\pi}{n} \right)\right)} \right) =\, ?

n n 1 n \dfrac{1}{n} 2 n 2n 1 2 n \dfrac{1}{2n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Swagat Panda
Dec 1, 2016

\begin{aligned} 2^{n-1}\prod_{k=1}^{n-1}\left(\cos(\theta)-\cos\left(\dfrac{k\pi}n\right)\right) &=\lim_{\theta \rightarrow 0}\prod_{k=1}^{n-1}\left(u+\frac1u-e^{ik\pi/n}-e^{-ik\pi/n}\right)\tag{1}\\ &=\lim_{\theta \rightarrow 0}\frac1{u^{n-1}}\prod_{k=1}^{n-1}\left(u-e^{ik\pi/n}\right)\prod_{k=1}^{n-1}\left(u-e^{-ik\pi/n}\right)\quad\quad\quad\tag{2}\\ &=\lim_{\theta \rightarrow 0}\dfrac1{u^{n-1}}\dfrac{u^{2n}-1}{u^2-1}\tag{3}\\[3pt] &=\lim_{\theta \rightarrow 0}\dfrac{u^n-u^{-n}}{u-u^{-1}}\tag{4}\\[6pt] &=\lim_{\theta \rightarrow 0}\dfrac{\sin(n\theta)}{\sin(\theta)}=\dfrac{n\theta\cdot\dfrac{\sin(n\theta)}{n\theta}}{\theta\cdot\dfrac{\sin(\theta)}{\theta}}=\boxed{n}\tag{5} \end{aligned}

Explanation:

(1): distribute 2 2 over each term in the product

(2): u + 1 u e i k π / n e i k π / n = 1 u ( u e i k π / n ) ( u e i k π / n ) u+\dfrac1u-e^{ik\pi/n}-e^{-ik\pi/n}=\dfrac1u\left(u-e^{ik\pi/n}\right)\left(u-e^{-ik\pi/n}\right)

(3): k = 1 2 n ( u e i k π / n ) = u 2 n 1 \prod\limits_{k=1}^{2n}\left(u-e^{ik\pi/n}\right)=u^{2n}-1 , then divide out the k = n k=n and k = 2 n k=2n terms

(4): algebra

(5): sin ( x ) = e i x e i x 2 i \sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i} and lim x 0 s i n x x = 1 \displaystyle\lim_{x \rightarrow 0}\dfrac{sinx}{x}=1

i did by ssunming n=2

A Former Brilliant Member - 4 years, 4 months ago

Honestly i did by putting n=2!

Prakhar Bindal - 4 years, 6 months ago

Log in to reply

That's actually a very handy method in solving objective questions, and honestly, I also use it very frequently in some quizzes. I call it 'Jugaad method'.! :)

Swagat Panda - 4 years, 6 months ago

Log in to reply

Especially in JEE Where time is a major factor for success :)

Prakhar Bindal - 4 years, 6 months ago

Log in to reply

@Prakhar Bindal Very right.! :)

Swagat Panda - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...