Given that k = 1 ∑ 1 4 tan − 1 2 k 2 1 = tan − 1 b a . where a , b are coprime integers.
Evaluate a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
OMG but how did you get 14/15
Using the subtraction formula for tangent: tan ( a − b ) = 1 + tan a tan b tan a − tan b , we yield:
tan − 1 u − tan − 1 v = tan − 1 1 + u v u − v .
Then notice that: 2 k 2 1 = 1 + ( 2 k + 1 ) ( 2 k − 1 ) ( 2 k + 1 ) − ( 2 k − 1 ) . Therefore, the sum equals: k = 1 ∑ 1 4 tan − 1 1 + ( 2 k + 1 ) ( 2 k − 1 ) ( 2 k + 1 ) − ( 2 k − 1 ) = k = 1 ∑ 1 4 tan − 1 ( 2 k + 1 ) − tan − 1 ( 2 k − 1 ) .
From here, we use telescoping method to get the above sum equals:
tan − 1 ( 2 ( 1 4 ) + 1 ) − tan − 1 ( 1 ) = tan − 1 1 + ( 2 ( 1 4 ) + 1 ) ( 2 ( 1 4 ) + 1 ) − 1 = 1 5 1 4
Thus, a + b = 1 4 + 1 5 = 2 9 .
I did it sir @Happy Melodies
Log in to reply
nice! :) haha not sir, mdm :) just kidding...
Log in to reply
I mean i wrote the solution already
Log in to reply
@Sandeep Rathod – haha ok.... I didn't see. Thanks for trying all my newly posted qns and posting gs solns :)
GE=arctan(2k+1)-arctan(2k-1) On substitution and simplifying the telescoping series we get arctan(14/15) So 29 is the answer
Problem Loading...
Note Loading...
Set Loading...
t a n − 1 4 k 2 2
= t a n − 1 1 + 4 k 2 − 1 2
= t a n − 1 1 + ( 2 k − 1 ) ( 2 k + 1 ) 2 k + 1 − ( 2 k − 1 )
= t a n − 1 ( 2 k + 1 ) − t a n − 1 ( 2 k − 1 )
adding
= t a n − 1 2 9 − t a n − 1 1
= t a n − 1 1 5 1 4