Who Wants to Sum Tan?

Geometry Level 4

Given that k = 1 14 tan 1 1 2 k 2 = tan 1 a b . \sum_{k=1}^{14} \tan^{-1} \frac{1}{2k^2} = \tan^{-1} \frac{a}{b}. where a , b a,b are coprime integers.

Evaluate a + b a + b .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sandeep Rathod
Nov 23, 2014

t a n 1 2 4 k 2 tan^{-1} \frac{2}{4k^{2}}

= t a n 1 2 1 + 4 k 2 1 =tan^{-1} \frac{2}{ 1 + 4k^{2} - 1}

= t a n 1 2 k + 1 ( 2 k 1 ) 1 + ( 2 k 1 ) ( 2 k + 1 ) =tan^{-1} \frac{2k + 1 - (2k - 1)}{ 1 + (2k - 1)(2k + 1)}

= t a n 1 ( 2 k + 1 ) t a n 1 ( 2 k 1 ) = tan^{-1}(2k + 1) - tan^{-1}(2k - 1)

adding

= t a n 1 29 t a n 1 1 = tan^{-1}29 - tan^{-1}1

= t a n 1 14 15 = tan^{-1} \frac{14}{15}

OMG but how did you get 14/15

Ruilin Wang - 1 year, 10 months ago
Happy Melodies
Nov 23, 2014

Using the subtraction formula for tangent: tan ( a b ) = tan a tan b 1 + tan a tan b \tan {(a-b)} = \frac{\tan a - \tan b}{1 + \tan a \tan b} , we yield:

tan 1 u tan 1 v = tan 1 u v 1 + u v \tan^{-1} u - \tan^{-1} v = \tan^{-1} \frac{u \ - \ v}{1 \ +\ uv} .

Then notice that: 1 2 k 2 = ( 2 k + 1 ) ( 2 k 1 ) 1 + ( 2 k + 1 ) ( 2 k 1 ) \frac{1}{2k^2} = \frac{(2k+1) - (2k-1)}{1 + (2k+1)(2k-1)} . Therefore, the sum equals: k = 1 14 tan 1 ( 2 k + 1 ) ( 2 k 1 ) 1 + ( 2 k + 1 ) ( 2 k 1 ) = k = 1 14 tan 1 ( 2 k + 1 ) tan 1 ( 2 k 1 ) . \sum_{k=1}^{14} \tan^{-1} \frac{(2k+1) - (2k-1)}{1 + (2k+1)(2k-1)} \\ = \sum_{k=1}^{14} \tan^{-1} (2k+1) - \tan^{-1} (2k-1).

From here, we use telescoping method to get the above sum equals:

tan 1 ( 2 ( 14 ) + 1 ) tan 1 ( 1 ) = tan 1 ( 2 ( 14 ) + 1 ) 1 1 + ( 2 ( 14 ) + 1 ) = 14 15 \tan^{-1} (2(14) + 1) - \tan^{-1} (1) = \tan^{-1} \frac{(2(14)+1) - 1} {1 + (2(14)+1)} =\frac{14}{15}

Thus, a + b = 14 + 15 = 29 a + b = 14 +15 = \boxed{29} .

I did it sir @Happy Melodies

sandeep Rathod - 6 years, 6 months ago

Log in to reply

nice! :) haha not sir, mdm :) just kidding...

Happy Melodies - 6 years, 6 months ago

Log in to reply

I mean i wrote the solution already

sandeep Rathod - 6 years, 6 months ago

Log in to reply

@Sandeep Rathod haha ok.... I didn't see. Thanks for trying all my newly posted qns and posting gs solns :)

Happy Melodies - 6 years, 6 months ago
Akhilesh Vibhute
Jan 16, 2016

GE=arctan(2k+1)-arctan(2k-1) On substitution and simplifying the telescoping series we get arctan(14/15) So 29 is the answer

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...