Whoa! That's Insane!

Calculus Level 3

A n = 0 1 0 1 0 1 0 1 0 1 i = 1 n a i 1 i = 1 n a i d a 1 d a 2 d a 3 d a n , A_n= \int_0^1 \int_0^1\int_0^1\int_0^1\dotsi \int_0^1 {\frac{\prod_{i=1}^{n} a_i}{1-\prod_{i=1}^{n} a_i}} da_1da_2da_3\dotsc da_n, where the integral sign is repeated n n times.

Find n = 2 A n \displaystyle \sum_{n=2}^{\infty} A_n .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hasan Kassim
Sep 9, 2014

First we simplify A n \displaystyle A_n :

The limits of the integrals tell us that 0 < i = 1 n a i < 1 \displaystyle 0<\prod_{i=1}^{n} a_i <1 since 0 < a i < 1 \displaystyle 0<a_i<1 for i = 1 , 2 , 3 n \displaystyle i=1,2,3 \cdots n

This reminds us of the convergent geometric series : m = 0 x m = 1 1 x \sum_{m=0}^{\infty} x^m = \frac{1}{1-x} which is equivalent to m = 1 x m = x 1 x \displaystyle \sum_{m=1}^{\infty} x^m = \frac{x}{1-x}

putting x = i = 1 n a i \displaystyle x=\prod_{i=1}^{n} a_i we get:

i = 1 n a i 1 i = 1 n a i = m = 1 ( i = 1 n a i ) m . \displaystyle \frac{\prod_{i=1}^{n} a_i}{1-\prod_{i=1}^{n} a_i}= \sum_{m=1}^{\infty} (\prod_{i=1}^{n} a_i) ^m.

= > A n = 0 1 0 1 0 1 0 1 0 1 m = 1 ( i = 1 n a i ) m d a 1 d a 2 d a 3 d a n \displaystyle => A_n = \int_{0}^{1} \int_{0}^{1}\int_{0}^{1}\int_{0}^{1} \cdots \int_{0}^{1} \sum_{m=1}^{\infty} (\prod_{i=1}^{n} a_i) ^m da_1da_2da_3 \cdots da_n

Since our limits of integration are independent of m, we can take out the summation notation:

A n = m = 1 0 1 0 1 0 1 0 1 0 1 ( i = 1 n a i ) m d a 1 d a 2 d a 3 d a n \displaystyle A_n =\sum_{m=1}^{\infty} \int_{0}^{1} \int_{0}^{1}\int_{0}^{1}\int_{0}^{1} \cdots \int_{0}^{1} (\prod_{i=1}^{n} a_i) ^m da_1da_2da_3 \cdots da_n

Now it is a well known fact that if the variables of a multiple integral are seperated, then the whole multiple integral is the product of the integrals with respect to each variable. In other words :

f ( x ) f ( y ) f ( z ) d x d y d z = f ( x ) d x × f ( y ) d y × f ( z ) d z \displaystyle \int \int \int f(x)f(y)f(z) dxdydz = \int f(x) dx \times \int f(y) dy \times \int f(z) dz (Example on a triple integral).

Therefore:

A n = m = 1 0 1 0 1 0 1 0 1 0 1 ( i = 1 n a i ) m d a 1 d a 2 d a 3 d a n \displaystyle A_n =\sum_{m=1}^{\infty} \int_{0}^{1} \int_{0}^{1}\int_{0}^{1}\int_{0}^{1} \cdots \int_{0}^{1} (\prod_{i=1}^{n} a_i) ^m da_1da_2da_3 \cdots da_n

= m = 1 0 1 0 1 0 1 0 1 0 1 ( i = 1 n a i m ) d a 1 d a 2 d a 3 d a n \displaystyle =\sum_{m=1}^{\infty} \int_{0}^{1} \int_{0}^{1}\int_{0}^{1}\int_{0}^{1} \cdots \int_{0}^{1} (\prod_{i=1}^{n} {a_i}^m) da_1da_2da_3 \cdots da_n

= m = 1 i = 1 n 0 1 a i m d a i \displaystyle =\sum_{m=1}^{\infty} \prod_{i=1}^{n} \int_{0}^{1} {a_i}^m da_i

= m = 1 i = 1 n a i m + 1 m + 1 0 1 \displaystyle = \sum_{m=1}^{\infty} \prod_{i=1}^{n} \left.\frac{{a_i}^{m+1}}{m+1}\right|_0^1

A n = m = 1 i = 1 n 1 m + 1 = m = 1 ( 1 m + 1 ) n = m = 2 1 m n \displaystyle A_n = \sum_{m=1}^{\infty} \prod_{i=1}^{n} \frac{1}{m+1} = \sum_{m=1}^{\infty} (\frac{1}{m+1})^n=\sum_{m=2}^{\infty} \frac{1}{m^n}

We are seeking n = 2 A n = n = 2 m = 2 1 m n = m = 2 n = 2 1 m n \displaystyle \sum_{n=2}^{\infty} A_n = \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \frac{1}{m^n} = \sum_{m=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{m^n}

We deal now with a convergent geometric series : n = 2 ( 1 m ) n = 1 m 2 1 1 m = 1 m ( m 1 ) \displaystyle \sum_{n=2}^{\infty} (\frac{1}{m})^n = \frac{\frac{1}{m^2}}{1-\frac{1}{m}} = \frac{1}{m(m-1)}

therefore the desired answer is : m = 2 1 m ( m 1 ) = m = 2 ( 1 m 1 1 m ) = 1 \displaystyle \sum_{m=2}^{\infty} \frac{1}{m(m-1)} = \sum_{m=2}^{\infty} ( \frac{1}{m-1} - \frac{1}{m} )= \boxed {1} (a telescoping series).

This is the way I did it :)

A Former Brilliant Member - 6 years, 9 months ago

i'm so proud of you :)

maha shkr - 6 years, 9 months ago

Log in to reply

Thanks teacher :)

Hasan Kassim - 6 years, 9 months ago

good job man !!!

Kavyanjali bhatia - 6 years, 8 months ago

didi the same way....by the way nice solution.

Trishit Chandra - 6 years, 3 months ago

@hasan kassim I really love the way you view the zeta function recursively ...... Enjoyed your problem ... Thank you for postin :)

Abhinav Raichur - 5 years, 11 months ago

Log in to reply

My pleasure :) :)

Hasan Kassim - 5 years, 11 months ago

Good solution

Parth Lohomi - 6 years, 5 months ago
Jack D'Aurizio
Sep 14, 2014

We have that A n = 1 + ζ ( n ) , A_n = -1+\zeta(n), since: [ 0 , 1 ] n x 1 x n 1 x 1 x n d μ = k = 1 + [ 0 , 1 ] n x 1 k x n k d μ = k = 1 + 1 ( k + 1 ) n \int_{[0,1]^n}\frac{x_1\cdot\ldots\cdot x_n}{1-x_1\cdot\ldots\cdot x_n}\,d\mu = \sum_{k=1}^{+\infty}\int_{[0,1]^n}x_1^k\cdot\ldots\cdot x_n^k\,d\mu = \sum_{k=1}^{+\infty}\frac{1}{(k+1)^n} hence n = 2 + A n = n = 2 + m = 2 + 1 m n = m = 2 + 1 m ( m 1 ) = 1. \sum_{n=2}^{+\infty}A_n = \sum_{n=2}^{+\infty}\sum_{m=2}^{+\infty}\frac{1}{m^n}=\sum_{m=2}^{+\infty}\frac{1}{m(m-1)}=1.

You should prove your first statement.

Hasan Kassim - 6 years, 9 months ago

Log in to reply

It is sufficient to expand the integrand function as a power series and integrate it termwise on [ 0 , 1 ] n [0,1]^n .

Jack D'Aurizio - 6 years, 9 months ago

Log in to reply

Well show me the complete answer

Hasan Kassim - 6 years, 9 months ago

Log in to reply

@Hasan Kassim I have just updated my answer.

Jack D'Aurizio - 6 years, 9 months ago
Lu Chee Ket
Dec 30, 2014

Integrate Ln x from 0 to 1 = -1; apply all common techniques of integration;

Sum of all converging harmonics from 2 to infinity in G.P.;

Finally,

1/ (2 - 1) - 1/ 2 + 1/ (3 - 1) - 1/ 3 + 1/ (4 - 1) - 1/ 4 + 1/ (5 - 1) - 1/ 5 + .... = 1/ (2 - 1) = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...